Monthly Archives: February 2014

Be Art

You are your own sculpture; Be art.

Here I am wearing a sculpture I made, called Gilroy. The Idea is based on the drawings of Kilroy made during WW2, but to make things spookier the eyes follow you as shown in this video. I suspect that the original drawings were made to discredit the Nazi’s by undermining the sense that they brought order and were the inevitable power in the area.

Feb. 2013 – March, 2015

Where does industrial CO2 come from? China mostly.

The US is in the process of imposing strict regulations on carbon dioxide as a way to stop global warming and climate change. We have also closed nearly new power plants, replacing them with cleaner options like a 2.2 billion dollar solar-electric generator in lake Ivanpah, and this January our president imposed a ban on lightbulbs of 60 W and higher. But it might help to know that China produced twice as much of the main climate change gas, carbon dioxide (CO2) as the US in 2012, and the ratio seems to be growing. One reason China produces so much CO2 is that China generates electricity from dirty coal using inefficient turbines.

Where the CO2 is coming from: a fair amount from the US and Europe, but mostly from China and India too.

From EDGAR 4.2; As of 2012 twice as much carbon dioxide, CO2 is coming from China as from the US and Europe.

It strikes me that a good approach to reducing the world’s carbon-dioxide emissions is to stop manufacturing so much in China. Our US electric plants use more efficient generating technology and burn lower carbon fuels than China does. We then add scrubbers and pollution reduction equipment that are hardly used in China. US manufacture thus produces not only less carbon dioxide than China, it also avoids other forms of air pollution, like NOx and SOx. Add to this the advantage of having fewer ships carrying products to and from China, and it’s clear that we could significantly reduce the world’s air problems by moving manufacture back to the USA.

I should also note that manufacture in the US helps the economy by keeping jobs and taxes here. A simple way to reduce purchases from China and collect some tax revenue would be to impose an import tariff on Chinese goods based, perhaps on the difference in carbon emissions or other pollution involved in Chinese manufacture and transport. While I have noted a lack of global warming, sixteen years now, that doesn’t mean I like pollution. It’s worthwhile to clean the air, and if we collect tariffs from the Chinese and help the US economy too, all the better.

Robert E. Buxbaum, February 24, 2014. Nuclear power produces no air pollution and uses a lot less land area compared to solar and wind projects.

Toxic electrochemistry and biology at home

A few weeks back, I decided to do something about the low quality of experiments in modern chemistry and science sets; I posted to this blog some interesting science experiments, and some more-interesting experiments that could be done at home using the toxic (poisonous dangerous) chemicals available under the sink or on the hardware store. Here are some more. As previously, the chemicals are toxic and dangerous but available. As previously, these experiments should be done only with parental (adult) supervision. Some of these next experiments involve some math, as key aspect of science; others involve some new equipment as well as the stuff you used previously. To do them all, you will want a stop watch, a volt-amp meter, and a small transformer, available at RadioShack; you’ll also want some test tubes or similar, clear cigar tubes, wire and baking soda; for the coating experiment you’ll want copper drain clear, or copper containing fertilizer and some washers available at the hardware store; for metal casting experiment you’ll need a tin can, pliers, a gas stove and some pennies, plus a mold, some sand, good shoes, and a floor cover; and for the biology experiment you will need several 9 V batteries, and you will have to get a frog and kill it. You can skip any of these experiments, if you like and do the others. If you have not done the previous experiments, look them over or do them now.

1) The first experiments aim to add some numerical observations to our previous studies of electrolysis. Here is where you will see why we think that molecules like water are made of fixed compositions of atoms. Lets redo the water electrolysis experiment now with an Ammeter in line between the battery and one of the electrodes. With the ammeter connected, put both electrodes deep into a solution of water with a little lye, and then (while watching the ammeter) lift one electrode half out, place it back, and lift the other. You will find, I think, that one of the other electrode is the limiting electrode, and that the amperage goes to 1/2 its previous value when this electrode is half lifted. Lifting the other electrode changes neither the amperage or the amount of bubbles, but lifting this limiting electrode changes both the amount of bubbles and the amperage. If you watch closely, though, you’ll see it changes the amount of bubbles at both electrodes in proportion, and that the amount of bubbles is in promotion to the amperage. If you collect the two gasses simultaneously, you’ll see that the volume of gas collected is always in a ratio of 2 to 1. For other electrolysis (H2 and Cl2) it will be 1 to1; it’s always a ratio of small numbers. See diagram below on how to make and collect oxygen and hydrogen simultaneously by electrolyzing water with lye or baking soda as electrolyte. With lye or baking soda, you’ll find that there is always twice as much hydrogen produced as oxygen — exactly.

You can also do electrolysis with table salt or muriatic acid as an electrolyte, but for this you’ll need carbon or platinum electrodes. If you do it right, you’ll get hydrogen and chlorine, a green gas that smells bad. If you don’t do this right, using a wire instead of a carbon or platinum electrode, you’ll still get hydrogen, but no chlorine. Instead of chlorine, you’ll corrode the wire on that end, making e.g. copper chloride. With a carbon electrode and any chloride compound as the electrolyte, you’ll produce chlorine; without a chloride electrolyte, you will not produce chlorine at any voltage, or with any electrode. And if you make chlorine and check the volumes, you’ll find you always make one volume of chlorine for every volume of hydrogen. We imagine from this that the compounds are made of fixed atoms that transfer electrons in fixed whole numbers per molecule. You always make two volumes of hydrogen for every volume of oxygen because (we think) making oxygen requires twice as many electrons as making hydrogen.

At home electrolysis experiment

At home electrolysis experiment

We get the same volume of chlorine as hydrogen because making chlorine and hydrogen requires the same amount of electrons to be transferred. These are the sort of experiments that caused people to believe in atoms and molecules as the fundamental unchanging components of matter. Different solutes, voltages, and electrodes will affect how fast you make hydrogen and oxygen, as will the amount of dissolved solute, but the gas produced are always the same, and the ratio of volumes is always proportional to the amperage in a fixed ratio of small whole numbers.

As always, don’t let significant quantities of use hydrogen and oxygen or pure hydrogen and chlorine mix in a closed space. Hydrogen and oxygen is quite explosive brown’s gas; hydrogen and chlorine are reactive as well. When working with chlorine it is best to work outside or near an open window: chlorine is a poison gas.

You may also want to try this with non-electrolytes, pure water or water with sugar or alcohol dissolved. You will find there is hardly any amperage or gas with these, but the small amount of gas produced will retain the same ratio. For college level folks, here is some physics/math relating to the minimum voltage and relating to the quantities you should expect at any amperage.

2) Now let’s try electro-plating metals. Using the right solutes, metals can be made to coat your electrodes the same way that bubbles of gas coated your electrodes in the experiments above. The key is to find the right chemical, and as a start let me suggest the copper sulphate sold in hardware stores to stop root growth. As an alternative copper sulphate is often sold as part of a fertilizer solution like “Miracle grow.” Look for copper on the label, or for a blue color fertilizer. Make a solution of copper using enough copper so that the solution is recognizably green, Use two steel washers as electrodes (that is connect the wires from your battery to the washers) and put them in the solution. You will find that one side turns red, as it is coated with copper. Depending on what else your copper solution contained, bubbles may appear at the other washer, or the other washer will corrode. 

You are now ready to take this to a higher level — silver coating. take a piece of silver plated material that you want to coat, and clean it nicely with soap and water. Connect it to the electrode where you previously coated copper. Now clean out the solution carefully. Buy some silver nitrate from a drug store, and dissolve a few grams (1/8 tsp for a start) in pure water; place the silverware and the same electrodes as before, connected to the battery. For a nicer coat use a 1 1/2 volt lantern battery; the 6 V battery will work too, but the silver won’t look as nice. With silver nitrate, you’ll notice that one electrode produces gas (oxygen) and the other turns silvery. Now disconnect the silvery electrode. You can use this method to silver coat a ring, fork, or cup — anything you want to have silver coated. This process is called electroplating. As with hydrogen production, there is a proportional relationship between the time, the amperage and the amount of metal you deposit — until all the silver nitrate in solution is used up.

As a yet-more complex version, you can also electroplate without using a battery. This was my Simple electroplating (presented previously). Consider this only after you understand most everything else I’ve done. When I saw this the first time in high school I was confused.

3) Casting metal objects using melted pennies, heat from a gas stove, and sand or plaster as a cast. This is pretty easy, but sort of dangerous — you need parents help, if only as a watcher. This is a version of an experiment I did as a kid.  I did metal casting using lead that some plumbers had left over. I melted it in a tin can on our gas stove and cast “quarters” in a plaster mold. Plumbers no longer use lead, but modern pennies are mostly zinc, and will melt about as well as my lead did. They are also much safer.

As a preparation for this experiment, get a bucket full of sand. This is where you’ll put your metal when you’re done. Now get some pennies (1970 or later), a pair of pliers, and an empty clean tin can, and a gas stove. If you like you can make a plaster mold of some small object: a ring, a 50 piece — anything you might want to cast from your pennies. With parents’ help, light your gas stove, put 5-8 pennies in the empty tin can, and hold the can over the lit gas burner using your pliers. Turn the gas to high. In a few minutes the bottom of the can will burn and become red-hot. About this point, the pennies will soften and melt into a silvery puddle. By tilting the can, you can stir the metal around (don’t get it on you!). When it looks completely melted you can pour the molten pennies into your sand bucket (carefully), or over your plaster mold (carefully). If you use a mold, you’ll get a zinc copy of whatever your mold was: jewelry, coins, etc. If you work at it, you’ll learn to make fancier and fancier casts. Adult help is welcome to avoid accidents. Once the metal solidifies, you can help cool it faster by dripping water on it from a faucet. Don’t touch it while it’s hot!

A plaster mold can be made by putting a 50¢ piece at the bottom of a paper cup, pouring plaster over the coin, and waiting for it to dry. Tear off the cup, turn the plaster over and pull out the coin; you’ve got a one-sided mold, good enough to make a one-sided coin. If you enjoy this, you can learn more about casting on Wikipedia; it’s an endeavor that only costs 4 or 5 cents per try. As a safety note: wear solid leather shoes and cover the floor near the stove with a board. If you drop the metal on the floor you’ll have a permanent burn mark on the floor and your mother will not be happy. If you drop hot metal on your you’ll have a permanent injury, and you won’t be happy. Older pennies are made of copper and will not melt. Here’s a video of someone pouring a lot of metal into an ant-hill (kills lots of ants, makes a mold of the hill).

It's often helpful to ask yourself, "what would Dr. Frankenstein do?"

It’s nice to have assistants, friends and adult help in the laboratory when you do science. Even without the castle, it’s what Dr. Frankenstein did.

4) Bringing a dead frog back to life (sort of). Make a high voltage battery of 45 to 90 V battery by attaching 5-10, 9V batteries in a daisy chain they will snap together. If you touch both exposed contacts you’ll give yourself a wicked shock. If you touch the electrodes to a newly killed frog, the frog legs will kick. This is sort of groovy. It was the inspiration for Dr. Frankenstein (at right), who then decides he could bring a person back from the dead with “more power.” Frankenstein’s monster is brought back to life this way, but ends up killing the good doctor. Shocks are sometimes helpful reanimating people stricken by heat attacks, and many buildings have shockers for this purpose. But don’t try to bring back the long-dead. By all accounts, the results are less-than pleasing. Try dissecting the rest of the frog and guess what each part is (a world book encyclopedia helps). As I recall, the heart keeps going for a while after it’s out of the frog — spooky.

5) Another version of this shocker is made with a small transformer (1″ square, say, radioshack) and a small battery (1.5-6V). Don’t use the 90V battery, you’ll kill someone. As a first version of this shocker, strip 1″ of  insulation off of the ends of some wire 12″ long say, and attach one end to two paired wires of the transformer (there will usually be a diagram in the box). If the transformer already has some wires coming out, all you have to do is strip more insulation off the ends so 1″ is un-inuslated. Take two paired ends in your hand, holding onto the uninsulated part and touch both to the battery for a second or two. Then disconnect them while holding the bare wires; you’ll get a shock. As a nastier version, get a friend to hope the opposite pair of wires on the uninsulated parts, while you hold the insulated parts of your two. Touch your two to the battery and disconnect while holding the insulation, you will see a nice spark, and your friend will get a nice shock. Play with it; different arrangements give more sparks or bigger shocks. Another thing you can do: put your experiment near a radio or TV. The transformer sparks will interfere with most nearby electronics; you can really mess up a computer this way, so keep it far from your computer. This is how wireless radio worked long ago, and how modern warfare will probably go. The atom bomb was detonated with a spark like this.

If you want to do more advanced science, it’s a good idea to learn math. This is important for statistics, for engineering, for quantum mechanics, and can even help for music. Get a few good high school or college books and read them cover to cover. An approach to science is to try to make something cool, that sort-of works, and then try to improve it. You then decide what a better version would work like,  modify your original semi-randomly and see if you’re going in the right direction. Don’t redesign with only one approach –it may not work. Read whatever you can, but don’t believe all you read. Often books are misleading, or wrong, and blogs are worse (I ought to know). When you find mistakes, note them in the margin, and try to explain them. You may find you were right, or that the book was right, but it’s a learning experience. If you like you can write the author and inform him/her of the errors. I find mailed letters are more respectful than e-mails — it shows you put in more effort.

Robert Buxbaum, February 20, 2014. Here’s the difference between metals and non-metals, and a periodic table cup that I made, and sell. And here’s a difference between science and religion – reproducibility.

Hydrogen cars and buses are better than Tesla

Hydrogen fueled cars and buses are as clean to drive as battery vehicles and have better range and faster fueling times. Cost-wise, a hydrogen fuel tank is far cheaper and lighter than an equivalent battery and lasts far longer. Hydrogen is likely safer because the tanks do not carry their oxidant in them. And the price of hydrogen is relatively low, about that of gasoline on a per-mile basis: far lower than batteries when the cost of battery wear-out is included. Both Presidents Clinton and Bush preferred hydrogen over batteries, but the current administration favors batteries. Perhaps history will show them correct, but I think otherwise. Currently, there is not a hydrogen bus, car, or boat making runs at Disney’s Experimental Community of Tomorrow (EPCOT), nor is there an electric bus car or boat. I suspect it’s a mistake, at least convening the lack of a hydrogen vehicle. 

The best hydrogen vehicles on the road have more range than the best electric vehicle, and fuel faster. The hydrogen powered, Honda Clarity debuted in 2008. It has a 270 mile range and takes 3-5 minutes to fuel with hydrogen at 350 atm, 5150 psi. By contrast, the Tesla S-sedan that debuted in 2012 claims only a 208 mile range for its standard, 60kWh configuration (the EPA claims: 190 miles) and requires three hours to charge using their fastest charger, 20 kW.

What limits the range of battery vehicles is that the stacks are very heavy and expensive. Despite using modern lithium-ion technology, Tesla’s 60 kWh battery weighs 1050 lbs including internal cooling, and adds another 250 lbs to the car for extra structural support. The Clarity fuel system weighs a lot less. The hydrogen cylinders weigh 150 lb and require a fuel cell stack (30 lb) and a smaller lithium-ion battery for start-up (90 lb). The net effect is that the Clarity weighs 3582 lbs vs 4647 lbs for the Tesla S. This extra weight of the Tesla seems to hurt its mileage by about 10%. The Tesla gets about 3.3 mi/kWh or 0.19 mile/lb of battery versus 60 miles/kg of hydrogen for the Clarity suggesting  3.6 mi/kWh at typical efficiencies. 

High pressure hydrogen tanks are smaller than batteries and cheaper per unit range. The higher the pressure the smaller the tank. The current Clarity fuels with 350 atm, 5,150 psi hydrogen, and the next generation (shown below) will use higher pressure to save space. But even with 335 atm hydrogen (5000 psi) a Clarity could fuel a 270 mile range with four, 8″ diameter tanks (ID), 4′ long. I don’t know how Honda makes its hydrogen tanks, but suitable tanks might be made from 0.065″ Maranging (aged) stainless steel (UTS = 350,000 psi, density 8 g/cc), surrounded by 0.1″ of aramid fiber (UTS = 250,000 psi, density = 1.6 g/cc). With this construction, each tank would weigh 14.0 kg (30.5 lbs) empty, and hold 11,400 standard liters, 1.14 kg (2.5 lb) of hydrogen at pressure. These tanks could cost $1500 total; the 270 mile range is 40% more Than the Tesla S at about 1/10 the cost of current Tesla S batteries The current price of a replacement Tesla battery pack is $12,000, subsidized by DoE; without the subsidy, the likely price would be $40,000.

Next generation Honda fuel cell vehicle prototype at the 2014 Detroit Auto Show.

Next generation Honda fuel cell vehicle prototype at the 2014 Detroit Auto Show.

Currently hydrogen is more expensive than electricity per energy value, but my company has technology to make it cheaply and more cleanly than electricity. My company, REB Research makes hydrogen generators that produce ultra pure hydrogen by steam reforming wow alcohol in a membrane reactor. A standard generator, suitable to a small fueling station outputs 9.5 kg of hydrogen per day, consuming 69 gal of methanol-water. At 80¢/gal for methanol-water, and 12¢/kWh for electricity, the output hydrogen costs $2.50/kg. A car owner who drove 120,000 miles would spend $5,000 on hydrogen fuel. For that distance, a Tesla owner would spend only $4400 on electricity, but would have to spend another $12,000 to replace the battery. Tesla batteries have a 120,000 mile life, and the range decreases with age. 

For a bus or truck at EPCOT, the advantages of hydrogen grow fast. A typical bus is expected to travel much further than 120,000 miles, and is expected to operate for 18 hour shifts in stop-go operation getting perhaps 1/4 the miles/kWh of a sedan. The charge time and range advantages of hydrogen build up fast. it’s common to build a hydrogen bus with five 20 foot x 8″ tanks. Fueled at 5000 psi., such buses will have a range of 420 miles between fill-ups, and a total tank weight and cost of about 600 lbs and $4000 respectively. By comparison, the range for an electric bus is unlikely to exceed 300 miles, and even this will require a 6000 lb., 360 kWh lithium-ion battery that takes 4.5 hours to charge assuming an 80 kW charger (200 Amps at 400 V for example). That’s excessive compared to 10-20 minutes for fueling with hydrogen.

While my hydrogen generators are not cheap: for the one above, about $500,000 including the cost of a compressor, the cost of an 80 kW DC is similar if you include the cost to run a 200 Amp, 400 V power line. Tesla has shown there are a lot of people who value clean, futuristic transport if that comes with comfort and style. A hydrogen car can meet that handily, and can provide the extra comforts of longer range and faster refueling.

Robert E. Buxbaum, February 12, 2014 (Lincoln’s birthday). Here’s an essay on Lincoln’s Gettysburg address, on the safety of batteries, and on battery cost vs hydrogen. My company, REB Research makes hydrogen generators and purifiers; we also consult.

Patterns in climate; change is the only constant

There is a general problem when looking for climate trends: you have to look at weather data. That’s a problem because weather data goes back thousands of years, and it’s always changing. As a result it’s never clear what start year to use for the trend. If you start too early or too late the trend disappears. If you start your trend line in a hot year, like in the late roman period, the trend will show global cooling. If you start in a cold year, like the early 1970s, or the small ice age (1500 -1800) you’ll find global warming: perhaps too much. Begin 10-15 years ago, and you’ll find no change in global temperatures.

Ice coverage data shows the same problem: take the Canadian Arctic Ice maximums, shown below. If you start your regression in 1980-83, the record ice year (green) you’ll see ice loss. If you start in 1971, the year of minimum ice (red), you’ll see ice gain. It might also be nice to incorporate physics thought a computer model of the weather, but this method doesn’t seem to help. Perhaps that’s because the physics models generally have to be fed coefficients calculated from the trend line. Using the best computers and a trend line showing ice loss, the US Navy predicted, in January 2006, that the Arctic would be ice-free by 2013. It didn’t happen; a new prediction is 2016 — something I suspect is equally unlikely. Five years ago the National Academy of Sciences predicted global warming would resume in the next year or two — it didn’t either. Garbage in -garbage out, as they say.

Arctic Ice in Northern Canada waters, 1970-2014 from icecanada.ca 2014 is not totally in yet. What year do you start when looking for a trend?

Arctic Ice in Northern Canada waters, 1971-2014 from the Canadian ice service 2014 is not totally in yet , but is likely to exceed 2013. If you are looking for trends, in what year do you start?

The same trend problem appears with predicting sea temperatures and el Niño, a Christmastime warming current in the Pacific ocean. This year, 2013-14, was predicted to be a super El Niño, an exceptionally hot, stormy year with exceptionally strong sea currents. Instead, there was no el Niño, and many cities saw record cold — Detroit by 9 degrees. The Antarctic ice hit record levels, stranding a ship of anti warming activists. There were record few hurricanes.  As I look at the Pacific sea temperature from 1950 to the present, below, I see change, but no pattern or direction: El Nada (the nothing). If one did a regression analysis, the slope might be slightly positive or negative, but r squared, the significance, would be near zero. There is no real directionality, just noise if 1950 is the start date.

El Niño and La Niña since 1950. There is no sign that they are coming more often, or stronger. Nor is there evidence even that the ocean is warming.

El Niño and La Niña since 1950. There is no sign that they are coming more often, or stronger. Nor is clear evidence that the ocean is warming.

This appears to be as much a fundamental problem in applied math as in climate science: when looking for a trend, where do you start, how do you handle data confidence, and how do you prevent bias? A thought I’ve had is to try to weight a regression in terms of the confidence in the data. The Canadian ice data shows that the Canadian Ice Service is less confident about their older data than the new; this is shown by the grey lines. It would be nice if some form of this confidence could be incorporated into the regression trend analysis, but I’m not sure how to do this right.

It’s not so much that I doubt global warming, but I’d like a better explanation of the calculation. Weather changes: how do you know when you’re looking at climate, not weather? The president of the US claimed that the science is established, and Prince Charles of England claimed climate skeptics were headless chickens, but it’s certainly not predictive, and that’s the normal standard of knowledge. Neither country has any statement of how one would back up their statements. If this is global warming, I’d expect it to be warm.

Robert Buxbaum, Feb 5, 2014. Here’s a post I’ve written on the scientific method, and on dealing with abnormal statistics. I’ve also written about an important recent statistical fraud against genetically modified corn. As far as energy policy, I’m inclined to prefer hydrogen over batteries, and nuclear over wind and solar. The president has promoted the opposite policy — for unexplained, “scientific” reasons.

Nerves are tensegrity structures and grow when pulled

No one quite knows how nerve cells learn stuff. It is incorrectly thought that you can not get new nerves in the brain, nor that you can get brain cells to grow out further, but people have made new nerve cells, and when I was a professor at Michigan State, a Physiology colleague and I got brain and sensory nerves to grow out axons by pulling on them without the use of drugs.

I had just moved to Michigan State as a fresh PhD (Princeton) as an assistant professor of chemical engineering. Steve Heidemann was a few years ahead of me, a Physiology professor PhD from Princeton. We were both new Yorkers. He had been studying nerve structure, and wondered about how the growth cone makes nerves grow out axons (the axon is the long, stringy part of the nerve). A thought was that nerves were structured as Snelson-Fuller tensegrity structures, but it was not obvious how that would relate to growth or anything else. A Snelson-Fuller structure is shown below the structure stands erect not by compression, as in a pyramid or igloo, but rather because tension in the wires helps lift the metal pipes, and puts them in compression. The nerve cell, shown further below is similar with actin-protein as the outer, tensed skin, and a microtubule-protein core as the compress pipes. 

A Snelson-Fuller tensegrity sculpture in the graduate college courtyard at Princeton, where Steve and I got our PhDs

A Snelson-Fuller tensegrity sculpture in the graduate college courtyard at Princeton, an inspiration for our work.

Biothermodynamics was pretty basic 30 years ago (It still is today), and it was incorrectly thought that objects were more stable when put in compression. It didn’t take too much thermodynamics on my part to show otherwise, and so I started a part-time career in cell physiology. Consider first how mechanical force should affect the Gibbs free energy, G, of assembled microtubules. For any process at constant temperature and pressure, ∆G = work. If force is applied we expect some elastic work will be put into the assembled Mts in an amount  ∫f dz, where f is the force at every compression, and ∫dz is the integral of the distance traveled. Assuming a small force, or a constant spring, f = kz with k as the spring constant. Integrating the above, ∆G = ∫kz dz = kz2; ∆G is always positive whether z is positive or negative, that is the microtubule is most stable with no force, and is made less stable by any force, tension or compression. 

A cell showing what appears to be tensegrity. The microtubules in green surrounded by actin in red. If the actin is under tension the microtubules are in compression. From here.

A cell showing what appears to be tensegrity. The microtubules (green) surrounded by actin (red). In nerves Heidemann and I showed actin is in tension the microtubules in compression.

Assuming that microtubules in the nerve- axon are generally in compression as in the Snelson-Fuller structure, then pulling on the axon could potentially reduce the compression. Normally, this is done by a growth cone, we posited, but we could also do it by pulling. In either case, a decrease in the compression of the assembled microtubules should favor microtubule assembly.

To calculate the rates, I used absolute rate theory, something I’d learned from Dr. Mortimer Kostin, a most-excellent thermodynamics professor. I assumed that the free energy of the monomer was unaffected by force, and that the microtubules were in pseudo- equilibrium with the monomer. Growth rates were predicted to be proportional to the decrease in G, and the prediction matched experimental data. 

Our few efforts to cure nerve disease by pulling did not produce immediate results; it turns out to by hard to pull on nerves in the body. Still, we gained some publicity, and a variety of people seem to have found scientific and/or philosophical inspiration in this sort of tensegrity model for nerve growth. I particularly like this review article by Don Ingber in Scientific American. A little more out there is this view of consciousness life and the fate of the universe (where I got the cell picture). In general, tensegrity structures are more tough and flexible than normal construction. A tensegrity structure will bend easily, but rarely break. It seems likely that your body is held together this way, and because of this you can carry heavy things, and still move with flexibility. It also seems likely that bones are structured this way; as with nerves; they are reasonably flexible, and can be made to grow by pulling.

Now that I think about it, we should have done more theoretical or experimental work in this direction. I imagine that  pulling on the nerve also affects the stability of the actin network by affecting the chain configuration entropy. This might slow actin assembly, or perhaps not. It might have been worthwhile to look at new ways to pull, or at bone growth. In our in-vivo work we used an external magnetic field to pull. We might have looked at NASA funding too, since it’s been observed that astronauts grow in outer space by a solid inch or two, and their bodies deteriorate. Presumably, the lack of gravity causes the calcite in the bones to grow, making a person less of a tensegrity structure. The muscle must grow too, just to keep up, but I don’t have a theory for muscle.

Robert Buxbaum, February 2, 2014. Vaguely related to this, I’ve written about architecture, art, and mechanical design.