The typical car has about 60 ft2 of exposed, non glass surface area, of which perhaps 2/3 is exposed to the sun at any time. If you covered the car with high-quality solar cells, the surfaces in the sun would generate about 15W per square foot. That’s about 600W or 0.8 horsepower. While there is no-one would would like to drive a 0.8 hp car, there is a lot to be said for a battery powered electric car that draws 6000 Wh of charge every sunny day — 6kWh per day– moving or parked — especially if you use the car every day, but don’t use it for long trips.
Owners of the Tesla sedans claim you can get 2.5 to 3 miles/kWhr for average driving suggesting that if one were to coat a sedan with solar cells, one day in the sun would generate 15 to 20 miles worth of cost-free driving power. This is a big convenience for those who only drive 15 to 20 miles each day, to work and back. As an example, my business is only 3 miles from home. That’s enough for the lightyear one, pictured below. The range would be higher for a car with a lighter battery pack, and some very light solar cars that have been proposed.
Solar power also provides a nice security blanket boost for those who are afraid of running out of charge on the highway, or far from home. If a driver gets worried during the day, he or she could stop at a restaurant, or park in the sun, and get enough charge to go a few miles, especially if you stick to country roads. Unlike gas-powered cars, where mpg is highest on the highway, electric vehicles get more miles per kWh at low speeds. It seems to me that there is a place for the added comfort and convenience of solar.
Some years ago I wrote a largely negative review of Brown’s gas, but the COVID crisis in India makes me want to reconsider. Browns gas can provide a simple source of oxygen for those who are in need. First, an explanation, Browns gas is a two-to-one mix of hydrogen and oxygen; it’s what you get when you do electrolysis of water without any internal separator. Any source of DC electricity will do, e.g. the alternator of a car or a trickle charger of the sort folks buy for their car batteries, and almost any electrode will do too (I’d suggest stainless steel). You can generate pressure just by restricting flow from the electrolysis vessel, and it can be a reasonable source of small-scale oxygen or hydrogen. The reaction is:
H2O –> H2 + 1/2 O2.
The problem with Brown’s gas is that it is explosive, more explosive than hydrogen itself, so you have to handle it with care; avoid sparks until you separate the H2 from the O2. Even the unseparated mix has found some uses, e.g. as a welding gas, or for putting in cars to avoid misfires, increase milage, and decrease pollution. I think that methanol reforming is a better source of automotive hydrogen: hydrogen is a lot safer than this hydrogen-oxygen mix.
The mix is a lot less dangerous if you separate the oxygen from the hydrogen with a membrane, as I show in the figure. at right. If you do this it’s a reasonable wy to make oxygen for patients who need oxygen. The electrolysis cell can be a sealed bottle with water and the electrodes; add a flow restriction as shown to create the hydrogen pressure that drives the separation. The power can be an automotive trickle charger. You can get this sort of membranes from REB Research, here and many other suppliers. REB provide consulting services if you like.
In a pinch, you don’t even need the membrane, by the way. You can rely on your lungs to make the separation. A warning, though, the mix is dangerous. Avoid all sparks. Also, don’t put salt into the water. You can can put in some baking soda or lye to speed the electrolysis, but If you put salt in, you’ll find you don’t make oxygen, but will instead make chlorine. And chlorine is deadly. If you’re not sure, smell the gas. If it smells acrid, don’t use it. This is the chlorine-forming reaction.
2NaCl + 2 H2O –> H2 + Cl2 + 2NaOH
Ideally you should vent the hydrogen stream out the window, but for short term, emergency use, the hydrogen can be vented into your home. Don’t do this if anyone smokes (not that anyone should smoke about someone on oxygen). This is a semi-patentable design, but I’m giving it away; not everything that can be patented should be.
Fuel cells are highly efficient and hardly polluting. They have a long history of use in space, and as a power source for submarines. They are beginning to appear powering city buses and intercity trains, at least in Europe, but not so much in the US or Canada. The business case for fuel cells is that they provide clean electric power to the train or bus, without the need for overhead wires. Avoiding wires helps make up for the high cost of hydrogen as a fuel. The reluctance to switch to fuel cells is the US is due to the longer distances that must be covered. The very low volumetric energy density of hydrogen means you need many filling stations with hydrogen fuel cells, and many fill ups per trip.
On a mass-basis, hydrogen is energy dense, with 1 kg providing the same energy as 2-3 kg of gasoline. The problem with hydrogen (aside from the cost) is that its mass density is very low, less than 50g/liter, even at high pressure. This is terribly un-dense on a volume basis. It would take 20 liters of high pressure hydrogen (about 5 gallons) to take a car or bus as far as with one gallon of gasoline. Even with a huge tank of high pressure hydrogen, 150 gallons or so, a cross country trip would require some 12 fill ups, one every 250 miles, and this is an annoyance, besides being an infrastructure problem.
Then there is cost. In California, hydrogen costs far more than gasoline, between $12 and $15 per kg. That’s ten times as expensive as gasoline on a weight basis and 4 times as expensive on an energy basis. What’s needed is a cheaper, more energy-dense version of hydrogen, ideally one that can be used in both fuel cells and IC engines, and the version I’d like to suggest is hythane, a mix of methane (natural gas) and 20-30% hydrogen.
Hythane has about 3 times the volumetric energy density of hydrogen, and about 1/3 the price. It makes less CO and CO2 pollution because there is far less carbon. On an energy basis, hythane costs just slightly more than gasoline, and requires less infrastructure. Natural gas is cheap and available, delivered by pipeline, without the need for hydrogen delivery trucks. Because hythane has about three times the volumetric energy density of hydrogen, the tank described above, that would give a 250 mile ride with hydrogen, would give 750 miles with hythane. This means a lot fewer fueling stations are needed, and a lot fewer forced stops. As a bonus, hythane can be used in (some) IC engines as well as in fuel cells.
Hydrogen for hythane-automotive use can be made on site, by electrolysis of water. Because there is relatively little hydrogen in the mix, only 25% by volume, or 8% on an energy basis, there is relatively little burden on the electric grid, and fueling will be a lot faster than with battery chargers. Hythane is already in use in buses in China and Canada. These are normal combustion buses but hythane works even better — more efficiently — with fuel cells (solid oxide fuel cells) and thus hythane provides a path to efficiency and greater fuel cell use.
Natural gas does not work as well in fuel cells; it requires a pre-reformer to make some H2, and even then tends to coke. To be used in most fuel cells, the methane has to be converted, at lest partially into hydrogen and this takes heat energy and water.
CH4 + H2O + energy –> 3H2 + CO
Reforming is a lot easier with hythane; it can be done within the fuel cell. Within a SOFC, the hydrogen combustion, H2 + 1/2 O2 –> H2O, provides heat and water that helps feed the reforming reaction and helps prevent coking. Long term, fuel cells will likely dominate the energy future, but for now it’s nice to have a fuel that will work well in normal IC engines too.