Category Archives: Art

Some people have noticed that I’m wearing a rather dapper suit during the recent visit of the press to my lab. It’s important to dress sharp, I think, and that varies from situation to situation. Fashion is an obligation, not a privilege; you’ve got to be willing to suffer for it, for the greater good of all.

Do you think Lady Gaga finds her stuff comfortable?

Do you think Lady Gaga finds her stuff comfortable? She does it for the greater good. 

R.E. Buxbaum. You are your own sculpture; Be art.

 

Helium leak detector repaired and refurbished in Frankenmuth

To those who know Frankenmuth, MI, it is generally as “Little Bavaria,” the German-themed vacation town of quaint houses and shops; of cheese, wurst, beer, Christmas ornaments, and Oom Pa Pa bands. I know it in a slightly different way as the only town to get your helium leak detector repaired. There are at least three shops in Frankenmuth that repair helium leak detectors (or make new specialty versions), and this is the source of the reference leaks that most qualified shops use. So I was here yesterday and today, both for the World-class snow sculpture contest, and to get my helium leak detector looked at. It was acting funny; it turns out there was a leak in the leak detector plus a bad potentiometer on a switchover circuit. The leak is already fixed, and I should have it back in my shop next week (Wednesday).

Snow-sculpting in Frankenmuth 2013; I was there to have my helium leak detector fixed.

Snow-sculpting in Frankenmuth 2013; I was there to have my helium leak detector fixed.

veeco He-leak detector at REB Research.

The joy of curtains

By Dr. Robert E. Buxbaum January 18, 2013

In our northern climates most homes have double-paned windows; they cost a fortune, and are a lot better than plain glass, but they still lose a lot of heat: far more than the equivalent area of wall. The insulation value is poor mostly because the thickness is low: a typical double pane window is only ½” thick. The glass panes have hardly any insulation value, so the majority of the insulation is the 0.3″ air space between them. Our outer walls, by contrast, are typically 6” thick filled with glass –wool. The wall is 12 times as thick as the window, and it turns out that the R value is about 12 times as great. Since window area is about 1/10 the wall area, we can expect that about half your homes heat goes out through the windows (about half the air-conditioner cooling in the summer too). A good trick to improve your home’s insulation, then, is to add curtains as this provides a fairly thick layer of stagnant air inside the room, right next to your windows.

To see how much you can save by adding curtains, it’s nice (for me, and my mind-set mostly) to talk in terms of R values. In the northern USA, the “R” value of a typical, well-insulated outer wall is about 24. What that means is that it takes 24°F and one square foot of wall to remove 1 BTU per hour. That is, the resistance to heat loss is 24 °F.hr.ft2/BTU. The R value for a typical double pane window is about 2 in the same units, and is only 1 if you have single panes. The insulating quality of our windows is so poor that, for many homes, more heat is lost through the windows than through the rest of the wall space.

To figure out how much heat is lost through your windows take the area in square feet multiply by a typical temperature differential (50°F might be typical in Michigan), and divide by the R value of your paned windows (1 or 2) depending on whether it’s single or double paned. Since heat costs about $10/MMBTU ($10 per million BTU) for a gas heated house, you can figure out what a small, 10 ft2 window costs a typical Michigan householder as follows, assuming a single pane (R=1):

Q = Area* ∆T/R = 10 ft2 * 50°F/1 = 500 BTU/hr. Here Q is the heat lost per unit time, ∆T is the temperature difference between the window surface and the room, and A is the ara of the window surface.

Since there are 24 hours in a day, and 30.5 days in a month the dollar cost of that window is 500*24*31.5*10/1,000,000 = $3.78/month. After a few years, you’ll have paid $200 for that small window in lost heat and another $200 in air conditioning.

A cheap solution is to add curtains, shades, or plastic of some sort. These should not be placed too close to the window, or you won’t have a decent air gap, nor so far that the air will not be static in the gap. For small gaps between the window glass and your plastic or curtain, the heat transfer rate is proportional to the thermal conductivity of air, k, and inversely proportional to the air gap distance, ∂.

Q = ∆T A k /∂.

R  = ∂/k.

The thermal conductivity of air, k, is about .024 BTU/ft. hr°F. We thus confirm that the the R-value for an air gap of 9/16” or 1/20 foot is about 2 in these units. Though the typical air gap between the glass is less, about .3″ there is some more stagnant air outside the glass an that counts towards the 9/16″ of stagnant air. The k value of glass or plastic is much higher than of air, so the layers of glass or plastic add almost nothing to the total heat transfer resistance.

Because the R value of glass and plastic is so low, if you cover your window with a layer of plastic sheet that touches the window, the insulation effect is basically zero. To get insulation value you want to use a gap between about ½” and 1” in thickness. If you already have a 2 paned window of R value 2, you can expect to be able to raise your insulation value to 4 by adding a plastic sheet or single curtain at 9/16” from the glass.

Sorry to say, you can’t raise this insulation value much higher than 4 by use of a single air gap that’s more than 1″ thick. When a single gap exceeds this size, the insulating value drops dramatically as gas circulation in the gap (free convection) drives heat transfer. That’s why wall insulation has fiber-glass fill. For your home, you will want something more attractive than fiberglass between you and the window pane, and typical approaches  include cellular blinds or double layer drapes. These work on the same principle as the single sheet, but have extra layers that stop convection.

My favorite version of the double drapes is the federalist version, where the inner drape is near transparent, shim cloth hangs close to the window, with a heavier drape beyond that. The heavier curtain is closed at night and opened in daytime; where insulation is needed, the lighter cloth hangs day and night. This looks a lot better than a roll-type window shade, or bamboo screen. Besides, with a roll-shade or bamboo, you must put it close to the window where it will interfere with the convection flow, that is cold shedding from the shut window.

Another nice alternative is a “cell shade” These are folded lengths of two or more stiff cloths that are formed into honeycombs ½” to 2” apart. This empty thickness provides the insulating power of the shade. Placed at the right distance from the window, the cell shade will add 3 or more to the overall R value of the window (1/12 ft / .024 BTU/ft. hr°F = 3.5 ft2hr°F/BTU). As with a bamboo screen, all this R value goes away if the shade is set at more than about 1” from the window or an interior shade. At a greater thickness that this, the free convection flow of cold air between the window and the shade dominates, and you get a puddle of cold air on the floor. 

I would suggest a cellular shade that opens from the bottom only and is translucent. This provides light and privacy; a shade that is too dark will be left open. Behind this, my home has double-pane windows (when I was single the window was covered by a layer of plastic too). The see-through shade provides insulation while allowing one to see out the window (or let light in) when the shade is drawn. You want to be able to see out; that’s the reason you had a window in the first place. Very thick, insulating curtains and blinds seem like a waste to me – they are enough thicker to add any significant R-value, they block the light, and if they end up far from the window, the shedding heat loss will more than offset any small advantage from the thick cloth.

One last window insulation option that’s worth mentioning is a reflective coating on the glass (an e-coating). This is not as bad an idea as you might think, even in a cold climate as in Detroit. A surprising amount of heat tends to escape your windows in the form of radiation. That is, the heat leaves by way of invisible (infra –red) light that passes unimpeded through the double pane glass. In hot climates even more heat comes in this way, and a coating is even more useful to preserve air conditioning power. Reflective plastic coats are cheap enough and readily available, though they can be hard to apply, and are not always attractive.

You can expect to reduce the window heat loss by a factor of 3 or more using these treatments, reducing the heat loss through the small window to $1.00 or so per month, far enough that the main heat loss is through the walls. At that point, it may be worth putting your efforts elsewhere. Window treatments can save you money, make a previously uninhabitable room pleasant, and can help preserve this fair planet of ours. Enjoy.

Updated, Feb 9, 2022, REB.

How much wood could a woodchuck chuck?

How much wood could a woodchuck chuck, if a woodchuck could chuck wood. It’s a classic question with a simple answer: The woodchuck, also known as a groundhog or marmot, is a close relative to the beaver: it looks roughly the same, but is about 1/5 the weight  (10 pounds versus 50 pounds), and beavers do chuck wood, using their teeth to pile it onto their dams. I’ll call the tooth piling process chucking, since that’s what we would call it if a person did it by hand.

Beaver Dam

A beaver dam. From the size of this dam, and the rate of construction (one night) you can figure out how much wood a beaver could chuck, and from that how much a woodchuck could.

A reasonable assumption, is that a wood chuck would chuck about 1/5 as much wood as a beaver does. You might think this isn’t very much wood — and one researcher claimed it would be less than 1/2 lb. — but he’s wrong. A beaver is able to build a dam like the one shown in a single night. From the size of the dam and the speed of building you can estimate that the beaver chucked on the pile about 1000 lbs of wood per night (beavers work at night). To figure out how much wood a woodchuck would chuck, divide this rate by 5. Based on this, I’d estimate that a woodchuck would chuck some 200 lbs per day, if it chose to.

Woodchucks don’t chuck wood, as the question implies. Unlike beavers they do not build wood dams or lodges. Instead they live in burrows in the ground. Also woodchuck teeth are not so useful. Woodchucks do kick up a lot of dirt digging a burrow, as much as 700 lb/ day of dirt, but the question implies that this activity should not be counted as chucking. Well, now you know: it’s 200 lbs/night.

Robert Buxbaum. This post is revised January 30, 2020. My original estimate, from  January 2013 was half the value here. I’d come to believe that wood-chucks/ groundhogs are 1/10 the size of a beaver, so I’d estimated 100 lb/night.

REB Research periodic table cup

Some 20 years ago I designed this periodic table cup, but with only the 103 named elements that existed then. In part this was done because I wanted a good, large, white coffee cup, in part because I often found I needed a periodic table, and didn’t like to have to look one up, and in part to people how much more area you get on a cylinder than on a flat sheet (roughly 3.14 times more area). To show that, I put all the side elements (rare earth lanthanides, and actinides) where they belonged, and not off on the side. I also put hydrogen in twice, once as a metal (HCl) and once as a non metal (NaH). The color I chose was Tryian Blue, a key color of Biblical Tyre, what you get from male purpura mollusks (the females give a shade of red that I also try to associate with REB Research).

I’ve updated the cup to add more elements: I think it’s great. You can buy it for $30 through our web-site, or for $25 by e-mailing me (reb@rebresearch.com). Or if you do something really cool, I may send you one for free.

REB Research, Periodic table coffee cup

REB Research, Periodic table coffee cup

By the way, I only use 4 digits for the atomic weight; I can think of no application where a normal person needs more.

 

 

Theodore Roosevelt jumps fence, rides moose

One of my favorite presidents, a liberal Republican, a friend to immigrants and  the poor, but not opposed to prosperity either. Though some thought he might be crazy, none thought he was a wuss, and none messed with him or the USA when he was in office. Yes, that’s the president riding a moose, jumping a fence, and camping on a cliff with John Muir.

theodore-roosevelt-mooseTheodore Roosevelt Jumps Fence on Horsetheodore-roosevelt-yosemite

 

January 16, 2013 R.E. Buxbaum. If you liked this, you might want my insights into a famous incident where Teddy Roosevelt got shot on the way to giving a speech. Instead of treatment, he gave the 2 hour speech and survived. Why did he do this? How did he survive it?

Creepy sculpture at REB Research & Consulting.

Me with Gilroy

Me with Gilroy

During our downtime, I’ve been making a creepy sculpture that I call Gilroy. It looks a lot like Kilroy of WW2 fame, but its eyes follow you through use of a reasonably clever optical illusion. I’ve embedded a video of my secretary, Libby, standing next to our current, small version of Gilroy (Gilroy is the less hairy one on the right). If the embedded video works, you’ll see Gilroy’s eyes follow you. My secretary, Libby (more hair) is on the left. Her eyes follow you too, but less creepily .Gilroy and CL Brodman – Wi-Fi
Here’s what we do more normally at REB Research (hydrogen purifiers and hydrogen generators).