I just replaced the door knob assembly on my home and found that it was held in place by a faceplate that was attached by two, 5/8″, brass screws. These screws, shown at right with their replacement, would not have been able to withstand a criminal, I think. Our door is metal, foam filled, and reasonably strong. I figure it would have withstood a beating, but the brass screws would not, especially since only 1/4″ of the screw is designed to catch foam. Look closely at the screws, and you will see there are two sizes of pitch, each 1/4 long. Only the last 1/4″ looks like it was ever engaged. The top 1/4″ may have been designed to catch metal, but the holes in the door were not tapped to match. The bottom 1/4″ held everything. Even without a criminal attack, the screw at right was bent and beginning to go.
Instead of reusing these awful screws or buying similar ones, I replaced them with stainless screws, 1 3/4″ long, like the one shown in the picture above. But then I had a thought — what were the other locks on my door attached with? I checked and found my deadbolt lock was held in by two of the same type of sorry, 5/8″ brass screws. So I replaced these too, using two more, 1.75″ stainless steel. Then, in my disgust, I thought to write this post. Perhaps the screws holding your door hardware is as lousy as was holding mine. Take a look.
The glory of American screws and bolts is their low cost ubiquity, especially in our coarse thread (UNC = United National Coarse) sizes. Between 1/4 inch and 5/8″, they are sized in 1/16″ steps, and after that in 1/8″ steps. Below 3/16″, they are sized by wire gauges, and generally they have unique pitch sizes. All US screws and bolts are measured by their diameter and threads per inch. Thus, the 3/8-16 (UNC) has an outer diameter (major diameter) of 3/8″ with 16 threads per inch (tpi). 16 tpi is an ideal thread number for overall hold strength. No other bolt has 16 threads per inch so it is impossible to use the wrong bolt in a hole tapped for 3/8-16. The same is true for basically every course thread with a very few exceptions, mainly found between 3/16″ and 1/4″ where the wire gauges transition to fractional sizes. Because of this, if you stick to UTC you are unlikely to screw up, as it were. You are also less-likely to cross-thread.
US fine threads come in a variety of standards, most notably UNF = United National Fine. No version of fine thread is as strong as coarse because while there are more threads per inch, each root is considerably weaker. The advantage of fine treads is for use with very thin material, or where vibration is a serious concern. The problem is that screwups are far more likely and this diminishes the strength even further. Consider the 7/16″ – 24 (UNF). This bolt will fit into a nut or flange tapped for 1/2″- 24. The fit will be a little loose, but you might not notice. You will be able to wrench it down so everything looks solid, but only the ends of the threads are holding. This is a accident waiting to happen. To prevent such mistakes you can try to never allow a 7/6″-24 bolt into your shop, but this is uncomfortably difficult. If you ever let a 7/6″-24 bolt in, some day someone will grab it and use it, in all likelihood with a 1/2″ -24 nut or flange, since these are super-common. Under stress, the connection will fail in the worst possible moment.
Other UNF bolts and nuts present the same screwup risk. For example, between the 3/8″-24 and 5/16″-24 (UNF), or the #10-32 (UNF) and also with the 3/16″- 32, and the latter with the #8-32 (UNC). There is also a French metric with 0.9mm — this turns out to be identical to -32 pitch. The problem appears with any bolt pair where with identical pitch and the major diameter of the smaller bolt has a larger outer diameter (major diameter) than the inner diameter (minor diameter) of the larger bolt. If these are matched, the bolts will seem to hold when tightened, but they will fail in use. You well sometimes have to use these sizes because they match with some purchased flange. If you have to use them, be careful to use the largest bolt diameter that will fit into the threaded hole.
Where I have the option, my preference is to stick to UNC as much as possible, even where vibration is an issue. In vibration situations, I prefer to add a lock nut or sometimes, an anti-vibration glue, locktite, available in different release temperatures. Locktite is also helpful to prevent gas leaks. In our hydrogen purifiers, I use lock washers on the ground connection from the power cord, for example.
I try to avoid metric, by the way. They less readily available in the US, and more expensive. The other problem with metric is that there are two varieties (Standard and French — God love the French engineering) and there are so many sizes and pitches that screwups are common. Metric bolts come in every mm diameter, and often fractional mm too. There is a 2mm, a 2.3mm, a 2.5mm, and a 2.6mm, often with overlapping pitches. The pitch of metric screws and bolts is measured by their spacing, by the way, so a 1mm metric pitch means there is 1mm between threads, the the equivalent of a 24.5 pitch in the US, and a 0.9mm pitch = US-32. Thread confusion possibilities are endless. A M6x1 (6mm OD x 1mm pitch) is easily confused with a M5x1 or a M7x1, and the latter with the M7.5×1. A M8x1.25 is easily confused with a M9x1.25, and a M14x2 with an M16x2. And then there is confusion with US bolts: a 2.5mm metric pitch is nearly identical to a US 10tpi pitch. I can not rid myself of US threads, so I avoid metric where I can. As above, problems arise if you use a smaller diameter bolt in a larger diameter nut.
For those who have to use metric, I suggest you always use the largest bolt that will fit (assuming you can find it). I try to avoid bringing odd-size bolts into their shop, that is, stick to M6, M8, M10. It’s not always possible, but it’s a suggestion. I get equipment with odd-size metric bolts too. My preference is to stick to UNC and to avoid odd numbers.
Robert Buxbaum, January 23, 2024. Note: I’ve only really discussed bolt sizes between about #4 and 1″, and I didn’t consider UNRC or UNJF or other, odd options. You can figure these issues out yourself from the above, I think.
Leading up to the Cybertruck launch 4 weeks ago, the expert opinion was that it was a failure. Morgan Stanley, here dubbed it as one, as did Rolling Stone here. Without having driven the vehicle, the experts at Motor trend, here, declared it was worse than you thought, “a novelty” car. I’d like to differ. The experts point out that the design is fundamentally different from what we’ve made for years. They claim it’s ugly, undesirable, and hard to build. Ford’s F-150 trucks are the standard, the top selling vehicle in the US, and Cybertruck looks nothing like an F-150. I suspect that, because of the differences, the Cybertruck can hardly fail to be a success in both profit and market share.
Start with profit. Profit is the main measure of company success. High profit is achieved by selling significant numbers at a significant profit margin. Any decent profit is a success. This vehicle could trail the F-150 sales forever and Musk could be the stupidest human on the planet, so long as Tesla sells at a profit, and does so legally, the company will succeed. Tesla already has some 2 million pre-orders, and so far they show no immediate sign of leaving despite the current price of about $80,000. Unless you think they are all lying or that Musk has horribly mispriced the product, he should make a very decent profit. My guess is he’s priced to make over $10,000 per vehicle, or $20B on 2 million vehicles. Meanwhile, no other eV company seems to be making a profit.
The largest competing electric pickup company is Rivian. They sold 16,000 electric trucks in Q3 2023, but the profit margin is -100%. This is to say, they lose $1 for every $1 worth of sales –and that’s unsustainable. Despite claims to the contrary, a money-losing business is a failure. The other main competitors are losing too. Ford is reported to lose about $50,00 per eV. According to Automotive News, here, last week, Ford decided to cut production of its electric F-150, the Lightning, by 50%. This makes sense, but provides Cybertruck a market fairly clear of US e-competition.
Perhaps the most serious competitor is BYD, a Chinese company backed by the communist government, and Warren Buffet. They are entering the US market this month with a new pickup. It might be profitable, but BYD is relatively immune to profitability. The Chinese want dominance of the eV market and are willing to lose money for years until they get it. Fortunately for Tesla, the BYD truck looks like Rivian’s. Tesla’s trucks should exceed them in range, towing, and safety. BYD, it seems, is aiming for a lower price point and a different market, Rivian’s.
A video, here, shows the skin of a Cybertruck is bulletproof to 9mm, shotgun, and 45 caliber machine gun fire. Experts scoff at the significance of bulletproof skin — good for folks working among Mexican drug lords, or politicians, or Israelis. Tesla is aiming currently for a more upscale customer, someone who might buy a Hummer or an F-250. This is more usable and cheaper.
Another way Cybertruck could fail is through criminal activity. Musk could be caught paying off politicians or cheating on taxes or if the trucks fail their safety tests. So far, Cybertruck seems to meet Federal Motor Vehicle Safety Standards by a good margin. In a video comparison, here, it appears to take front end collisions as well as an F-150, and appears better in side collisions.
This leaves production difficulty. This could prevent the cybertruck from being a big success, and the experts have all harped on this. The vehicle body is a proprietary stainless steel, 0.07″ thick. Admittedly it’s is hard to form, but Tesla seems to manage it. VIN number records indicate that Tesla had delivered 448 cybertrucks as Friday last week, many of them to showrooms, but some to customers. Drone surveys of the Gigafactory lot show that about 19 are made per day. That’s a lot more than you’d see if assembly was by hand. Assuming a typical learning curve, it’s reasonable to expect some 600 will be delivered by December 31, and that production should reach 6000 per month in mid 2024. At that rate, they’ll be making and selling at the same rate as Rivian or Ford, and making real money doing it. The stainless body might even be a plus, deterring copycat competition. Other pluses are the add-ons, like the base-camp tent option, a battery extension, a ramp, and (it’s claimed) some degree of sea worthiness. Add-ons add profit and deter direct copying (for a time).
So why do I think the experts are so wrong? My sense is that these people are experts because of long experience at other companies — the competitors. They know what was tried, and that innovation failed. They know that their companies chose not to make anything like a Cybertruck, and not to provide the add-ons. They know that the big boys avoid “novelty cars” and add-ons. There is an affinity among experts for consensus and sure success, the success that comes from Chinese companies, government support and international banking. If the Cybertruck success is an insult to them and their expertise. Nonetheless, if Cybertruck succeeds, they will push their companies towards a more angular design plus add-ons. And they will claim cybertruck is no way novel, but that government support is needed to copy it.
Elite colleges strive to be selective, and they are, just not for the hard-working scholars they claim to select for. They claim to be color-blind, income-blind, and race-blind, aiming for the best: the most intelligent, most ethical, and hardest working scholar-candidates. Then, to their surprise and satisfaction, all the ivies find that the vast majority of the chosen come from the same rich families and prep-schools as 100 years ago. That happens because the selection is crooked with measures tilted to the rich, Protestant, and preppy.
Through most of the 1900s, most of the ivies had a Jewish quota, enforced formally or informally. They also did their best to discourage middle class, black, and Catholic students in the interest of maintaining the proper student mix. Under Woodrow Wilson, Princeton went further and admitted not one black student. When quotas became illegal, schools began to rely on athletics and tests, with blatant cheating as revealed by the “Varsity Blues” sting operation. In that sting, a dozen or more athletic coaches and high-school administrators were caught taking SAT tests for their richer, connected students, and/or making up phony athletic achievements. The Ivies claimed shock after the cheating was revealed, but it is beyond belief that no one had noticed that these top brains and athletes were neither.
Another version of this is that richer kids can get extra time to do SAT and ACT tests. The extra time doesn’t show up on the SAT or ACT score, you need a doctor to certify that you are dyslectic or have severe ADHD. Most boys are diagnosed with ADHD these days, itself something of a scam, but most boys don’t get extra test time. You need the right doctor and the right documentation, plus enough money and connections to get the test given by certified test-giver in your own private room. It used to be that the SAT and ACT would report the extra time, but this changed in 2004. Now the extra time, and the disease is not documented, just the higher score. There have been complaints, but the scam goes on. Similar to this, top Olympic athletes can be diagnosed with asthma, and allowed to use performance enhancing, anti-asthma steroids. Again complaints, but no change.
Ivy League schools also tilt to the right families by requiring signs of the right sort of leadership as evaluated by an interview and an essay (see my post on John Kennedy’s essay). You score high on leadership if you helped your relative run for governor. By contrast, if you organized a ping-pong or basketball tournament at your Catholic or Jewish school, you’re the wrong sort of leader. Eagle Scout is sort-of the right sort, and speaking against climate change on TV is. Greta Thernberg and Chelsea Clinton are climate leaders; you, probably are not.
The Ivys explicitly state that they choose for athleticism, but not all sports are equal. All the Ivies claim to need a good women’s lacrosse team, a good crew team, and some good high-divers. Are these sports unavailable at your high-school? What a shame, you’re not a real athlete. You can still try to get in based on extreme leadership and academics.
There is no real reason that Harvard needs a top crew team, or needs to excel at women’s lacrosse or high-diving. Sport was not an admission criteria in the 1800s. It was added in the 1900s to avoid admitting Catholics, Jews, and Asians who tended to score well but could not compete on the selected sports. The president of Harvard, Abbot Lowell wrote, “Somehow or other the enrollment of the Jewish students must be limited”. The method he chose, and that all the Ivies came to use, included these tests of leadership and sport, plus a preference for legacies. The children and grand-children of alumni are given significant preferential selection at all the ivies. At Harvard, the acceptance rate for legacy students is about 33%, compared with an overall acceptance rate of under 6%. Since legacies are mostly white, rich, protestant, and preppy, the next generation is guaranteed to be the same.
The Ivies’ methods have been challenged many times over the years. Quotas were found to be illegal as early as 1964. Since then there have been claims of effective quotas, a cause that was pushed under the rug until Donal Trump took it up. Most recently, Harvard, Princeton, and UNC were sued by Asians. One of these, from a poor background scored at the top of his class with a 4.4 GPA and had near-perfect SAT scores, but was rejected for no obvious reason beyond race. The Supreme Court is expected to hear the case in 2023. Ahead of this decision, all eight Ivies have decided to dispense with testing for at least for now. The ivies claim that, by making tests optional, they will avoid locking out students who are great (though somewhat illiterate and innumerate). The real purpose seems to be to lock out pushy Asians who might sue them or be so bright they make the legacies feel dumb.
None of the above would matter if the Ivies were not so wonderful, at least the better ones are. I went to Princeton grad school, see photos. It was great despite its waspy leanings. If you can go there, or to Harvard, Yale, Cornell or Penn, go. My feeling for Brown and Columbia are rather the opposite: they’ve gone to the extreme and voted for BDS, see the text here for Brown’s version. Not only did they vote to boycott Israelis and Israeli produce, the “B” of BDS, the’ve also committed to suppress Zionists everywhere. That’s Jews who support Israel. Several, non ivy schools, have committed to the same. In their view, for open debate to flourish anywhere, proud Jews must be excluded. These are no longer colleges, but Klavens.
It is a particular skill of management to hog the glory and cast the blame; if a project succeeds, executives will make it understood that the groups’ success was based on their leadership (and their ability to get everyone to work hard for low pay). If the project fails, a executive will cast blame typically on those who spotted the problem some months early. These are the people most likely to blame the executive, so the executive discredits them first.
This being the dynamic of executive oversight, it becomes difficult to look over the work of a group and tell who is doing good and who is coasting. If someone’s got to be fired in the middle of a project, or after, who do you fire? My first thought is that, following a failure, you fire the manager and the guy at the top who drew the top salary. That’s what winning sports teams do. It seems to promote “rebuilding” it’s a warning to those who follow. After the top people are gone, you might get an honest appraisal of what went wrong and what to do next.
A related problem, if you’re looking to hire is who to pick or promote from within. In the revolutionary army, they allowed the conscripts to pick some of their commanders, and promoted others based on success. This may not be entirely fair, as there are many causes to success and failure, but it seemed to work better than the British system, where you picked by birth or education. Here’s a lovely song about the value of university education in a modern major general.
A form of this feedback about who knows what he’d doing and who does not, is to look at who is listened to by colleagues. When someone speaks, do people who know listen. It’s a method I’ve used to try to guess who knew things in a field outside my own. Bull-shitters tend to be ignored when they speak. The major general above is never listened to.
In basketball or hockey, the equivalent method is to see who the other players pass to the most, and who steals the most from the other side. It does not take much watching to get a general sense, but statistics help. With statistics, one can set up a hierarchical system based on who listens to whom, or who passes to whom with a logistic equation as used for chess and dating sites. A lower-paid person at the center-top is a gem who you might consider promoting.
In terms of overall group management, it was the opinion of W Edwards Deming, the name-sake of the Deming prize for quality, that overall group success was typically caused by luck or by some non-human cause. Thus that any manager would be as good as any other. Deming had a lovely experiment to show why this is likely the case– see it here. If one company or team did better year after year, it was common that they were in the right territory, or at the right time. As an example, the person who succeeded selling big computers in New York in the 1960s was not necessarily a good salesman or manager. Anyone could have managed that success. To the extent that this is true, you should not fire people readily, but neither worry that your highest paid manager or salesman is irreplaceable.
There are several unbelievable assertions surrounding the Kennedy assassination, leading many to conclude that Oswald could not have killed Kennedy alone. I believe that many of these can be answered once you realize that Oswald used an Italian gun, and not a US gun. Italian engineering differs from our in several respects that derive from the aesthetic traditions of the countries. It’s not that our engineers are better or worse, but our engineers have a different idea of what good engineering is and thus we produce designs that, to an Italian engineer, are big, fat, slow, and ugly. In our eyes Italian designs are light, fast, pretty, low-power, and unreliable. In the movie, Ford vs Ferrari, the American designer, Shelby says that, “If races were beauty contests, the Ferrari would win.” It’s an American, can-do, attitude that rings hollow to an Italian engineer.
Three outstanding questions regarding the Kennedy assassination include: How did Oswald fire three bullets, reasonably accurately in 5 to 8 seconds. How did he miss the limousine completely on the first, closest shot, then hit Kennedy twice on the next two, after previously missing on a close shot at retired general, Edwin Walker. And how could the second shot have gone through Kennedy’s neck, then through his wrist, and through Connolly twice, emerging nearly pristine. I will try to answer by describing something of the uniquenesses of the gun and bullets, and of Italian engineering, in general.
The rifle Oswald used was a Modello 91/38, Carcano (1938 model of a design originally used in 1891) with an extra-long, 20.9″ barrel, bought for only $19.95 including a 4x sight. That’s $12.50 for the gun, the equivalent of $100 in 2020). The gun may have been cheep, but it was a fine Italian weapon: it was small, fast, pretty, manual, and unreliable. The small size allowed Oswald to get the gun into the book depository without arousing suspicion. He claimed his package held curtain rods, and the small, narrow shape of the gun made the claim believable.
The first question, the fast shooting, is answered in part by the fact that loading the 91/38 Carcano rifle takes practice. Three American marksmen who tried to duplicate the shots for the Warren commission didn’t succeed, but they didn’t have the practice with this type of gun that Oswald had. The Carcano rifle used a bolt and clip loading system that had gone out of style in the US before WWI. To put in a new shell, you manually unlock and pull back the bolt. The old casing then flies out, and the spring–clip loads a new shell. You then have to slam the bolt forward and lock it before you can fire again. For someone practiced, loading this way is faster than with a semi-automatic. To someone without practice it is impossibly slow, like driving a stick shift car for the first time. Even with practice, Americans avoid stick shift cars, but Italians prefer them. Some time after the Warren report came out, Howard Donahue, an American with experience on this type of rifle, was able to hit three moving targets at the distance in 4.8 seconds. That’s less than the shortest estimate of the time it took Oswald to hit twice. Penn of Penn and Teller recreates this on TV, and shows here that Kennedy’s head would indeed have moved backward.
That Oswald was so accurate is explained, to great extent by the way the sight was mounted and by the unusual bullets. The model 38 Carcano that Oswald bought fired light, hollow, 6.5×52mm cartridges. This is a 6.5 mm diameter bullet, with a 52 mm long casing. The cartridge was adopted by the Italians in 1940, and dropped by 1941. These bullets are uncommonly bullet is unusually long and narrow (6.5 mm = .26 caliber), round-nosed and hollow from the back to nearly the front. In theory a cartridge like this gives for greater alignment with the barrel., and provides a degree of rocket power acceleration after it leaves the muzzle. Bullets like this were developed in the US, then dropped by the late 1800s. The Italians dropped this bullet for a 7.5 mm diameter version in 1941. The 6.5 mm version can go through two or three people without too much damage, and they can behave erratically. The small diameter and fast speed likely explains how Oswald’s second shot went through Kennedy and Connolly twice without dong much. An American bullet would have done a lot more damage.
Because of the light weight and the extra powder, the 6.5 mm hollow bullet travels uncommonly fast, about 700 m/s at the muzzle with some acceleration afterwards, ideally. Extra powder packs into the hollow part by the force of firing, providing, in theory, low recoil, rocket power. Unfortunately these bullets are structurally weak. They can break apart or bend and going off-direction. By comparison the main US rifle of WWII, the M1, was semi-automatic, with bullets that are shorter, heavier, and slower, going about 585 m/s. Some of our bullets had steel cores too to provide a better combination of penetration and “stopping power”. Only Oswald second shot stayed pristine. It could be that his third shot — the one that made Kennedy’s head explode — flattened or bent in flight.
The extra speed of Oswald’s bullets and the alignment of his gun would have given Oswald a great advantage in accuracy. At 100 yards (91 m), test shots with the rifle landed 2 1⁄2 to 5 inches high, within a 3-to-5-inch circle. Good accuracy with a sight that was set to high for close shot accuracy. The funky sight, in my opinion , explains how Oswald managed to miss Walker, but explains how he hit Kennedy accurately especially on the last, longest shot, 81 m to Kennedy’s head
Given the unusually speed of the bullets (I will assume 750 m/s) Oswald’s third shot would have taken 0.108 s to reach the target. If the sight were aligned string and if Kennedy were not moving, the bullet would have been expected to fall 2.24″ low at this range, but given the sight alignment we’d expect him to shoot 3-6″ high on a stationary target, and dead on, on the president in his moving vehicle. Kennedy was moving at 5 m/sand Oswald had a 17° downward shot. The result was a dead on hit to the moving president assuming Oswald didn’t “lead the shot”. The peculiarities of the gun and bullets made Oswald more accurate here than he’d been in the army, while causing him to miss Walker completely at close range.
We now get to the missed, first shot: How did he miss the car completely firing at the closest range. The answer, might have to do with deformation of the bullets. A hollow base bullet can explode, or got dented and fly off to the side. More prosaically, it could be that he hit a tree branch or a light pole. The Warren commission blamed a tree that was in the way, and there was also a light pole that was never examined. For all we know the bullet is in a branch today, or deflected. US bullets would have a greater chance to barrel on through to at least hit the car. This is an aspect of Italian engineering — when things are light, fast, and flexible, unusual things happen that do not expect to happen with slow, ugly, US products. It’s a price of excellence, Italian style.
Another question appears: Why wasn’t Oswald stopped when the FBI knew he’d threatened Kennedy, and was suspected of shooting at Walker. The simple answer, I think, is that the FBI was slow, and plodding. Beyond this, neither the FBI nor the CIA seem to have worried much about Kennedy’s safety. Even if Kennedy had used the bubble top, Oswald would likely have killed him. Kennedy didn’t care much for the FBI and didn’t trust Texas. Kennedy had a long-running spat with the FBI involving his involvement with organized crime, and perhaps running back to the days when Kennedy’s father was a bootlegger. His relation with the CIA was similar.
I should mention that the engineering styles and attitudes of a country far outlast the particular engineer.We still make big, fat, slow, ugly cars — that are durable and reasonably priced. Germans still overbuild, and Italian cars and guns are as they ever were: beautiful, fast, expensive, and unreliable. The fastest production car is Italian, a Bugatti with a top speed of 245 mph; the fastest rollercoaster is at Ferrari gardens, 149 mph, and in terms of guns, let me suggest you look at the Mateba, left, a $3000 beautiful super fast semi-automatic revolver (really), produced in Italy, and available in 357 magnum and .44 magnum only . It’s a magnificent piece of Italian engineering beautiful, accurate, powerful, and my guess is it’s unreliable as all get out. Our, US pistols typically cost 1/5 to 1/10 as much. A country’s cars, planes, and guns represent the country’s aesthetics. The aesthetics of a county changes only slowly, and I think the world is better off because of it
Robert Buxbaum, February 14, 2020. One of my favorite courses in engineering school, Cooper Union, was in Engineering Aesthetics and design.
The following is Elizabeth Warren’s law registration for the state of Texas, 1986 claiming she is an American Indian. There was very little evidence for it and an genetic test showed she was somewhere between 1/256 and 1/1000 Indian. My son was determined to have 1/1000 Indian blood in a similar test, and we have no Indian ancestors at all, as best as I can tell. Still, as an Indian Ms. Warren is entitled to affirmative action; she’s to get preferential hiring financial, and educational treatment over someone more qualified, but without Indian blood. Affirmative action was institute as a way to redress the suffering of Indians and other minorities, but it is not clear that is serves this purpose when someone with so little, or no blood can take the advantage. There is no requirement of proof that you are at all Indian by blood, and even if you are 1/1000 Indian, what about the other 999/1000? Why don’t they count to give yo lower standing than someone who is 1/10 Indian, say. How indian should you have to be to get benefits.
Related to the question of how much Indian blood you should have to have to get benefits is the question of making other folks suffer to provide this benefit. Many of the people who suffer because of affirmative action are dependents of immigrant minorities, Jews, Italians, and Chinese, and these folks have not had it that well. The Italians were discriminated against in hiring, as mandated by the city council, see announcement below, and Chinese immigrants had very limited migration and work rights, as specified under The Chinese Exclusion Act of 1882. This act was not repealed until 1943 as part of our war against Japan.
At maximum Ms. Warren is less than 1% indians and thus over 99% Texan. This is to suggest that the majority of her bloodline is descent is from those who displaced the Indians, but her preferential hiring was likely in preference to other minorities who suffered too, and who likely have a purer bloodline to that suffering and exclusion than Ms Warren has. Is this what we want from affirmative action? The form we’ve got benefits, for the most part, only the most crooked, connected members of society. People like Ms Warren. I think this has to change.
A lot of folks want to marry their special soulmate, and there are many books to help get you there, but I thought I might discuss a mathematical approach that optimizes your chance of marrying the very best under some quite-odd assumptions. The set of assumptions is sometimes called “the fussy suitor problem” or the secretary problem. It’s sometimes presented as a practical dating guide, e.g. in a recent Washington Post article. My take, is that it’s not a great strategy for dealing with the real world, but neither is it total nonsense.
The basic problem was presented by Martin Gardner in Scientific American in 1960 or so. Assume you’re certain you can get whoever you like (who’s single); assume further that you have a good idea of the number of potential mates you will meet, and that you can quickly identify who is better than whom; you have a desire to marry none but the very best, but you don’t know who’s out there until you date, and you’ve an the inability to go back to someone you’ve rejected. This might be he case if you are a female engineering student studying in a program with 50 male engineers, all of whom have easily bruised egos. Assuming the above, it is possible to show, using Riemann Integrals (see solution here), that you maximize your chance of finding Mr/Ms Right by dating without intent to marry 36.8 % of the fellows (1/e), and then marrying the first fellow who’s better than any of the previous you’ve dated. I have a simpler, more flexible approach to getting the right answer, that involves infinite serieses; I’ll hope to show off some version of this at a later date.
With this strategy, one can show that there is a 63.2% chance you will marry someone, and a 36.8% you’ll wed the best of the bunch. There is a decent chance you’ll end up with number 2. You end up with no-one if the best guy appears among the early rejects. That’s a 36.8% chance. If you are fussy enough, this is an OK outcome: it’s either the best or no-one. I don’t consider this a totally likely assumption, but it’s not that bad, and I find you can recalculate fairly easily for someone OK with number 2 or 3. The optimal strategy then, I think, is to date without intent at the start, as before, but to take a 2nd or 3rd choice if you find you’re unmarried after some secondary cut off. It’s solvable by series methods, or dynamic computing.
It’s unlikely that you have a fixed passel of passive suitors, of course, or that you know nothing of guys at the start. It also seems unlikely that you’re able to get anyone to say yes or that you are so fast evaluating fellows that there is no errors involved and no time-cost to the dating process. The Washington Post does not seem bothered by any of this, perhaps because the result is “mathematical” and reasonable looking. I’m bothered, though, in part because I don’t like the idea of dating under false pretense, it’s cruel. I also think it’s not a winning strategy in the real world, as I’ll explain below.
One true/useful lesson from the mathematical solution is that it’s important to learn from each date. Even a bad date, one with an unsuitable fellow, is not a waste of time so long as you leave with a better sense of what’s out there, and of what you like. A corollary of this, not in the mathematical analysis but from life, is that it’s important to choose your circle of daters. If your circle of friends are all geeky engineers, don’t expect to find Prince Charming among them. If you want Prince Charming, you’ll have to go to balls at the palace, and you’ll have to pass on the departmental wine and cheese.
The assumptions here that you know how many fellows there are is not a bad one, to my mind. Thus, if you start dating at 16 and hope to be married by 32, that’s 16 years of dating. You can use this time-frame as a stand in for total numbers. Thus if you decide to date-for-real after 37%, that’s about age 22, not an unreasonable age. It’s younger than most people marry, but you’re not likely to marry the fort person you meet after age 22. Besides, it’s not great dating into your thirties — trust me, I’ve done it.
The biggest problem with the original version of this model, to my mind, comes from the cost of non-marriage just because the mate isn’t the very best, or might not be. This cost gets worse when you realize that, even if you meet prince charming, he might say no; perhaps he’s gay, or would like someone royal, or richer. Then again, perhaps the Kennedy boy is just a cad who will drop you at some time (preferably not while crossing a bridge). I would therefor suggest, though I can’t show it’s optimal that you start out by collecting information on guys (or girls) by observing the people around you who you know: watch your parents, your brothers and sisters, your friends, uncles, aunts, and cousins. Listen to their conversation and you can get a pretty good idea of what’s available even before your first date. If you don’t like any of them, and find you’d like a completely different circle, it’s good to know early. Try to get a service job within ‘the better circle’. Working with people you think you might like to be with, long term, is a good idea even if you don’t decide to marry into the group in the end.
Once you’ve observed and interacted with the folks you think you might like, you can start dating for real from the start. If you’re super-organized, you can create a chart of the characteristics and ‘tells’ of characteristics you really want. Also, what is nice but not a deal-breaker. For these first dates, you can figure out the average and standard deviation, and aim for someone in the top 5%. A 5% target is someone whose two standard deviations above the average. This is simple Analysis of variation math (ANOVA), math that I discussed elsewhere. In general you’ll get to someone in the top 5% by dating ten people chosen with help from friends. Starting this way, you’ll avoid being unreasonably cruel to date #1, nor will you loose out on a great mate early on.
After a while, you can say, I’ll marry the best I see, or the best that seems like he/she will say yes (a smaller sub-set). You should learn from each date, though, and don’t assume you can instantly size someone up. It’s also a good idea to meet the family since many things you would not expect seem to be inheritable. Meeting some friends too is a good idea. Even professionals can be fooled by a phony, and a phony will try to hide his/her family and friends. In the real world, dating should take time, and even if you discover that he/ she is not for you, you’ll learn something about what is out there: what the true average and standard deviation is. It’s not even clear that people fall on a normal distribution, by the way.
Don’t be too upset if you reject someone, and find you wish you had not. In the real world you can go back to one of the earlier fellows, to one of the rejects, if one does not wait too long. If you date with honesty from the start you can call up and say, ‘when I dated you I didn’t realize what a catch you were’ or words to that effect. That’s a lot better than saying ‘I rejected you based on a mathematical strategy that involved lying to all the first 36.8%.’
Robert Buxbaum, December 9, 2019. This started out as an essay on the mathematics of the fussy suitor problem. I see it morphed into a father’s dating advice to his marriage-age daughters. Here’s the advice I’d given to one of them at 16. I hope to do more with the math in a later post.
While several towns have had problems with lead in their water, the main route for lead entering the bloodstream seems to be from the soil. The lead content in the water can be controlled by chemical means that I reviewed recently. Lead in the soil can not be controlled. The average concentration of lead in US water is less than 1 ppb, with 15 ppb as the legal limit. According to the US geological survey, of lead in the soil, 2014., the average concentration of lead in US soil is about 20 ppm. That’s more than 1000 times the legal limit for drinking water, and more than 20,000 times the typical water concentration. Lead is associated with a variety of health problems, including development problems in children, and 20 ppm is certainly a dangerous level. Here are the symtoms of lead poisoning.
Several areas have deadly concentrations of lead and other heavy metals. Central Colorado, Kansas, Washington, and Nevada is particularly indicated. These areas are associated with mining towns with names like Leadville, Telluride, Silverton, Radium, or Galena. If you live in an areas of high lead, you should probably not grow a vegetable garden, nor by produce at the local farmer’s market. Even outside of these towns, it’s a good idea to wash your vegetables to avoid eating the dirt attached. There are hardly any areas of the US where the dust contains less than 1000 times the lead level allowed for water.
Breathing the dust near high-lead towns is a problem too. The soil near Telluride Colorado contains 1010 mg/kg lead, or 0.1%. On a dust-blown day in the area, you could breath several grams of the dust, each containing 1 mg of lead. That’s far more lead than you’d get from 1000 kg of water (1000 liters). Tests of blood lead levels, show they rise significantly in the summer, and drop in the winter. The likely cause is dust: There is more dust in the summer.
Produce is another route for lead entering the bloodstream. Michigan produce is relatively safe, as the soil contains only about 15 ppm, and levels in produce are generally far smaller than in the soil. Ohio soils contains about three times as much lead, and I’d expect the produce to similarly contain 3 times more lead. That should still be safe if you wash your food before eating. When buying from high-lead states, like Colorado and Washington, you might want to avoid produce that concentrates heavy metals. According Michigan State University’s outreach program, those are leafy and root vegetables including mustard, carrots, radishes, potatoes, lettuce, spices, and collard. Fruits do not concentrate metals, and you should be able to buy them anywhere. (I’d still avoid Leadville, Telluride, Radium, etc.). Spices tend to be particularly bad routes for heavy metal poisoning. Spices imported from India and Soviet Georgia have been observed to have as much as 1-2% lead and heavy metal content; saffron, curry and fenugreek among the worst. A recent outbreak of lead poisoning in Oakland county, MI in 2018 was associated with the brand of curry powder shown at left. It was imported from India.
Marijuana tends to be grown in metal polluted soil because it tolerates soil that is too polluted fro most other produce. The marijuana plant concentrates the lead into the leaves and buds, and smoking sends it to the lungs. While tobacco smoking is bad, tobacco leaves are washed and the tobacco products are regulated and tested for lead and other heavy metals. If you choose to smoke cigarettes, I’d suggest you chose brands that are low in lead. Here is an article comparing the lead levels of various brands. . Better yet, I’s suggest that you vape. There are several advantages of vaping relative to smoking the leaf directly. One of them is that the lead is removed in the process of making concentrate.
Some states test the lead content of marijuana; Michigans and Colorado do not, and even in products that are tested, there have been scandals that the labs under-report metal levels to help keep tainted products on the shelves. There is also a sense that the high cost encourages importers to add lead dust deliberately to increase the apparent density. I would encourage the customer to buy vape or tested products, only.
Success is measured in different ways in different cultures. Among US academics, the first mark of success is going to a great college. If you graduate from Eureka college, as Ronald Reagan did, you are pretty-well assumed to be an idiot; if you went to Harvard and Princeton, as John Kennedy did, you’re off on a good start to popular acclaim, even if your entry essay was poor, and you got thrown out of one because of cheating. Graduation from a top college does not guarantee being seen as a success forever, though. You have to continue in the Harvard way: use big words — something that puts-off the less-educated; you have to win awards, write books or articles; have the right politics; work at a high power job and money, meet the right people, exercise regularly, etc. It’s hard work being successful; disposable income is tight, and one rarely has time for kids.
Fertility rates compared, world-wide, 1970 vs 2014.
By contrast, in ancient societies, success included food, leisure, land, and general respect. A successful person is seated at the front of the church, and consulted as few academics are. And there is another great measure: children. In traditional societies, children are valued, They are seen as a joy in your youth, and a comfort in your old age. They are you and your wife reborn, with reborn wonder. They are your future, and the defenders of your legacy; ready to take on the world with an outlook of their own, but one that you had a unique chance to mold. In the Bible, children are a sign of blessing, and the opposite is explicitly stated as a punishment for violating God’s commands.
I have come to wonder why rich countries have so few children, and why successful people in rich countries have yet fewer than the average. These people and countries are no worse than others, yet they are common. Harvard produces a surprising number of “Legal Eunuchs” — people with a refined place in society, but no time or children; people who work tirelessly for the pleasure and success of others. Harvard couples marry late, or not at all. If they marry, they usually produce childless households, DINKs — Double Income No Kids.
The same pattern is seen in Europe, UK, Japan, Canada, Russia, and China, as the map above shows. Particularly among the élite, the great works are being created for the deplorables and their children. Could anything be more depressing?
There’s and organization for everything these days. In this case, the seven things you didn’t know include that Eunuchs can be trusted, that they love to serve, that they are compassionate, that they are passionate for excellence, and that they have fewer distractions. This is the opposite of toxic masculinity, but it comes at a cost.
I think one reason for the growing ranks of Harvard Eunuchs is a dislike of masculinity; masculinity is sort-of toxic, associated with war, revolution, and selfishness. In the 1800s, only Republicans and Communists had beards; the more-refined gentleman did not. The eunuch qualities listed above, are considered noble, charitable, and selfless. Clearly it helps others if you are selfless, but why do it? I think the answer is self-doubt about ones worthiness to enjoy the fruits of your labor. To get to Harvard takes striving, and that relates to a degree of self-doubt and loathing about your worthiness today.
I graduated from Cooper Union, and went to Princeton for graduate school. It was a magical place, I became machines chairman, then chairman of the Graduate College House Committee. I dealt with a lot of very bright, accomplished people, and a pattern I saw often was self-doubt and loathing. And the most accomplished students were the ones with the most self-loathing. It made them strive to be better; it drove the innovative research and the grant writing. It motivated graduates to try to become professors (only a few would succeed) or judges, or financiers, or politicians. All that takes time, striving, and putting off your wants in the here-and-now, for a reward to the future you that is worthy. It’s a system that produces greatness, but at great personal cost.
So what’s to be done? How do you help yourself, or some other, the bright, educated fellow see that he or she is good enough. Unfortunately, for those in the system, good enough equals bad. I found it helped to say, in my own words, the words or Solomon:”Eat, drink, and enjoy yourself.” “It is not good to be over-wise… Why wear yourself out?” Not that these words changed them, but they did seem to give comfort. I’d suggest the write things that were honest; that people understand, and that they take time for themselves. “May your fountain be blessed, and enjoy the wife of your youth.” (Ps.127:3-4, Ecc.8:15, Pr.5:18…) It suffices to retell old truths and raise a new generation. Only make sure that what you have to say is honest and logical, and trust your own value. As for toxic masculinity, it can have its own charm.