Category Archives: quality

Camless valves and the Fiat-500

One of my favorite automobile engine ideas is the use of camless, electronic valves. It’s an idea whose advantages have been known for 100 years or more, and it’s finally going to be used on a mainstream, commercial car — on this year’s Fiat 500s. Fiat is not going entirely camless, but the plan is to replace the cams on the air intake valves with solenoids. A normal car engine uses cams and lifters to operate the poppet valves used to control the air intake and exhaust. Replacing these cams and lifters saves some weight, and allows the Fiat-500 to operate more efficiently at low power by allowing the engine to use less combustion energy to suck vacuum. The Fiat 500 semi-camless technology is called Multiair: it’s licensed from Valeo (France), and appeared as an option on the 2010 Alfa Romeo.

How this saves mpg is as follows: at low power (idling etc.), the air intake of a normal car engine is restricted creating a fairly high vacuum. The vacuum restriction requires energy to draw and reduces the efficiency of the engine by decreasing the effective compression ratio. It’s needed to insure that the car does not produce too much NOx when idling. In a previous post, I showed that the rate of energy wasted by drawing this vacuum was the vacuum pressure times the engine volume and the rpm rate; I also mentioned some classic ways to reduce this loss (exhaust recycle and adding water).

Valeo’s/Fiat’s semi-camless design does nothing to increase the effective compression ratio at low power, but it reduces the amount of power lost to vacuum by allowing the intake air pressure to be higher, even at low power demand. A computer reduces the amount of air entering the engine by reducing the amount of time that the intake valve is open. The higher air pressure means there is less vacuum penalty, both when the valve is open even when the valve is closed. On the Alfa Romeo, the 1.4 liter Multiair engine option got 8% better gas mileage (39 mpg vs 36 mpg) and 10% more power (168 hp vs 153 hp) than the 1.4 liter cam-driven engine.

David Bowes shows off his latest camless engines at NAMES, April 2013.

David Bowes shows off his latest camless engines at NAMES, April 2013.

Fiat used a similar technology in the 1970s with variable valve timing (VVT), but that involved heavy cams and levers, and proved to be unreliable. In the US, some fine engineers had been working on solenoids, e.g. David Bowes, pictured above with one of his solenoidal engines (he’s a sometime manufacturer for REB Research). Dave has built engines with many cycles that would be impractical without solenoids, and has done particularly nice work reducing the electric use of the solenoid.

Durability may be a problem here too, as there is no other obvious reason that Fiat has not gone completely camless, and has not put a solenoid-controlled valve on the exhaust too. One likely reason Fiat didn’t do this is that solenoidal valves tend to be unreliable at the higher temperatures found in exhaust. If so, perhaps they are unreliable on the intake too. A car operated at 1000-4000 rpm will see on the order of 100,000,000 cycles in 25,000 miles. No solenoid we’ve used has lasted that many cycles, even at low temperatures, but most customers expect their cars to go more than 25,000 miles without needing major engine service.

We use solenoidal pumps in our hydrogen generators too, but increase the operating live by operating the solenoid at only 50 cycles/minute — maximum, rather than 1000- 4000. This should allow our products to work for 10 years at least without needing major service. Performance car customers may be willing to stand for more-frequent service, but the company can’t expect ordinary customers to go back to the days where Fiat stood for “Fix It Again Tony.”

Why the Boeing Dreamliner’s batteries burst into flames

Boeing’s Dreamliner is currently grounded due to two of their Li-Ion batteries having burst into flames, one in flight, and another on the ground. Two accidents of the same type in a small fleet is no little matter as an airplane fire can be deadly on the ground or at 50,000 feet.

The fires are particularly bad on the Dreamliner because these lithium batteries control virtually everything that goes on aboard the plane. Even without a fire, when they go out so does virtually every control and sensor. So why did they burn and what has Boeing done to take care of it? The simple reason for the fires is that management chose to use Li-Cobalt oxide batteries, the same Li-battery design that every laptop computer maker had already rejected ten years earlier when laptops using them started busting into flames. This is the battery design that caused Dell and HP to recall every computer with it. Boeing decided that they should use a massive version to control everything on their flagship airplane because it has the highest energy density see graphic below. They figured that operational management would insure safety even without the need to install any cooling or sufficient shielding.

All lithium batteries have a negative electrode (anode) that is mostly lithium. The usual chemistry is lithium metal in a graphite matrix. Lithium metal is light and readily gives off electrons; the graphite makes is somewhat less reactive. The positive electrode (cathode) is typically an oxide of some sort, and here there are options. Most current cell-phone and laptop batteries use some version of manganese nickel oxide as the anode. Lithium atoms in the anode give off electrons, become lithium ions and then travel across to the oxide making a mixed ion oxide that absorbs the electron. The process provides about 4 volts of energy differential per electron transferred. With cobalt oxide, the cathode reaction is more or less CoO2 + Li+ e– —> LiCoO2. Sorry to say this chemistry is very unstable; the oxide itself is unstable, more unstable than MnNi or iron oxide, especially when it is fully charged, and especially when it is warm (40 degrees or warmer) 2CoO2 –> Co2O+1/2O2. Boeing’s safety idea was to control the charge rate in a way that overheating was not supposed to occur.

Despite the controls, it didn’t work for the two Boeing batteries that burst into flames. Perhaps it would have helped to add cooling to reduce the temperature — that’s what’s done in lap-tops and plug-in automobiles — but even with cooling the batteries might have self-destructed due to local heating effects. These batteries were massive, and there is plenty of room for one spot to get hotter than the rest; this seems to have happened in both fires, either as a cause or result. Once the cobalt oxide gets hot and oxygen is released a lithium-oxygen fire can spread to the whole battery, even if the majority is held at a low temperature. If local heating were the cause, no amount of external cooling would have helped.

battery-materials-energy-densities-battery-university

Something that would have helped was a polymer interlayer separator to keep the unstable cobalt oxide from fueling the fire; there was none. Another option is to use a more-stable cathode like iron phosphate or lithium manganese nickel. As shown in the graphic above, these stable oxides do not have the high power density of Li-cobalt oxide. When the unstable cobalt oxide decomposed there was oxygen, lithium, and heat in one space and none of the fire extinguishers on the planes could put out the fires.

The solution that Boeing has proposed and that Washington is reviewing is to leave the batteries unchanged, but to shield them in a massive titanium shield with the vapors formed on burning vented outside the airplane. The claim is that this shield will protect the passengers from the fire, if not from the loss of electricity. This does not appear to be the best solution. Airbus had planned to use the same batteries on their newest planes, but has now gone retro and plans to use Ni-Cad batteries. I don’t think that’s the best solution either. Better options, I think, are nickel metal hydride or the very stable Lithium Iron Phosphate batteries that Segway uses. Better yet would be to use fuel cells, an option that appears to be better than even the best batteries. Fuel cells are what the navy uses on submarines and what NASA uses in space. They are both more energy dense and safer than batteries. As a disclaimer, REB Research makes hydrogen generators and purifiers that are used with fuel-cell power.

More on the chemistry of Boeing’s batteries and their problems can be found on Wikipedia. You can also read an interview with the head of Tesla motors regarding his suggestions and offer of help.

 

Helium leak detector repaired and refurbished in Frankenmuth

To those who know Frankenmuth, MI, it is generally as “Little Bavaria,” the German-themed vacation town of quaint houses and shops; of cheese, wurst, beer, Christmas ornaments, and Oom Pa Pa bands. I know it in a slightly different way as the only town to get your helium leak detector repaired. There are at least three shops in Frankenmuth that repair helium leak detectors (or make new specialty versions), and this is the source of the reference leaks that most qualified shops use. So I was here yesterday and today, both for the World-class snow sculpture contest, and to get my helium leak detector looked at. It was acting funny; it turns out there was a leak in the leak detector plus a bad potentiometer on a switchover circuit. The leak is already fixed, and I should have it back in my shop next week (Wednesday).

Snow-sculpting in Frankenmuth 2013; I was there to have my helium leak detector fixed.

Snow-sculpting in Frankenmuth 2013; I was there to have my helium leak detector fixed.

veeco He-leak detector at REB Research.