Category Archives: Detroit

The argument for free trade is half sound

In 1900, the average tariff on imported goods was 27.4% and there was no income tax. Import tariffs provided all the money to run the US government and there was no minimum wage law. The high tariffs kept wage rates from falling to match those in the 3rd world. Currently, the average tariff is near-zero: 1.3%. There is a sizable income tax and a government income deficit; minimum wage laws are used to prop up salaries. Most economists claim we are doing things right now, and that the protective tariffs of the past were a mistake. Donald Trump claimed otherwise in his 2016 campaign. Academic economists are appalled, and generally claim he’s a fool, or worse. The argument they use to support low tariffs was made originally by Adam Smith (1776): “It is the maxim of every prudent master of a family, never to attempt to make at home what it will cost him more to make than to buy…. If a foreign country can supply us with a commodity cheaper than we ourselves can make it, better buy it of them with some part of the produce of our own industry.” As a family benefits from low cost products, a country must too. Why pay more?  How stupid would you have to be to think otherwise?

A cartoon from Puck 1911. Do you cut tariffs, and if so how much. High tariffs provide high wages and expensive prices for the consumer. Low tariffs lead to cheap products and low wages. Uncle Sam is confused.

A cartoon from Puck, 1911. Should tariffs be cut, and if so, how much. High tariffs provide high prices and high wages. Low tariffs lead to low prices for the consumer, but low wages. Uncle Sam is confused.

Of course, a country is not a family, and it is clear that some people will benefit more from cheap products, others less, and some folks will even suffer. Consumers and importers benefit, while employees generally do not. They are displaced from work, or find they must compete with employees in very low wage countries, and often with child labor or slave labor. The cartoon at right shows the conundrum. Uncle Sam holds a knife labeled “Tariff Revision” trying to decide where to cut. Any cut that helps consumers hurts producers just as much. Despite the cartoon, it seems to me there is likely a non-zero tariff rate that does not slow trade too much, but still provides revenue and protects American jobs.

A job-protecting tariff was part of the Republican platform from Lincoln’s time, well into the 20th century, and part of the Whig platform before that. Democrats, especially in the south, preferred low tariffs, certainly no more than needed to provide money for government operation. That led to a diminution of US tariffs, beginning in the mid- 1800s, first for US trade with developed countries, and eventually with third world as well. By the 1930s, we got almost no government income from tariffs, and almost all from an ever-larger income tax. After WWII low tariff reductions became a way to promote world stability too: our way of helping the poor abroad get on their feet again. In the 2016 campaign, candidate Donald Trump challenged this motivation and the whole low-tariff approach as anti- American (amor anti America-first). He threatened to put a 35% tariff on cars imported from Mexico as a way to keep jobs here, and likely to pay for the wall he claimed he would build as president. Blue-collar workers loved this threat, whether they believed it or not, and they voted Republican to an extent not seen in decades. Educated, white collar folks were uniformly appalled at Trump’s America-first insensitivity, and perhaps (likely) by the thought that they might have to pay more for imported goods. As president, Trump re-adjusted his threat to 20%, an interesting choice, and (I suspect) a good one.

The effect of a 20% tariff can be seen better, I think, by considering a barter-economy between two countries, one developed, one not: Mexico and the US, say with an without a 20% tax. Assume these two countries trade only in suits and food. In the poor country, the average worker can make either 4 suits per month or 200 lbs of food. In the developed country, workers produce either 10 suits or 1000 lbs of food. Because it’s a barter economy with a difference in production, we expect that, in the poor country, a suit costs 50 lbs of food; in the rich country, 100 lbs of food. There is room here to profit by trade.

The current state of tariffs world-wide. Quite a few countries have tariffs much higher than ours. Among those, Mexico.

Tariffs world-wide. While we put no tax on most imported products, while much of the world taxes our products rather heavily.

With no tariff, totally free trade, an importer will find he can make a profit bringing 100 lbs of US food to Mexico to trade for 2 suits. He can return two suits to the US having gotten his two suits at the price of one, less the cost of transport, lawyers, and middlemen (relatively low). Some US suit-makers will suffer, but the importer benefits immediately, and eventually US consumers and Mexican suit workers will benefit too. Eventually, US suit prices will go down, and Mexican wages up, We will have cheaper suits and will shift production to produce what we make best —  food.

In time, we can expect that an American suit maker will move his entire production to Mexico bringing better equipment and better management. Under his hand, lets assume his Mexican workers make 6 suits per month. The boss can now pay them better, perhaps 100 lbs of food and two suits per month. He still makes a nice profit, more than before: he ships two suits to the US to buy the 200 lbs of food, and retains now two suits as profit. Hillary Clinton believed this process was irreversible. “Those jobs are gone and they’re not coming back,” her campaign told CNN. She claimed she’d retrain the jobless “for the jobs of the future” and redistribute the wealth of the rich, a standard plank of the democratic platform since 1896. But for several reasons industrial voters didn’t trust her. Redistribution of wealth rarely works because, for example, the manufacturer can keep his profits off-shore, as many do.

While a very high tariff would stop all trade, but lets see what would happen with Trump’s 20% tariff. With a 20% tariff, when the first two suits come to the US, we extract 0.4 suits in tax revenue, but nothing on export. The importer still makes a profit, but it’s now 0.6 suits, the equivalent of 60 lbs of food. He can sell his suits for less than the American, but not quite as much less. If the manufacturer moves to Mexico he makes more money than by trade alone, but not quite as much. Tax is still collected on every suit brought to America — now 20% of the 3 suits per Mexican worker that the Boss must export. The American worker’s wages are depressed but he/she isn’t forced to compete with the Mexican dollar-for-dollar (suit for suit). In barter terms, he isn’t required to make 6 suits for every 100 lbs of food.lincoln-national-bank-internal-improvements-tariffs

Repeating the above for different tax rates, we find that, in the above fictional economy a 50% tariff in the maximum to allow any trade (or the minimum rate to stop trade completely): the first two suits might enter; but they’d be taxed at one suit, just enough to pay for the 100 lbs of food. There would be no profit for the importer, and he/she would stop importing. At 50% tariff, we would get no new goods, and we’d collect no new revenue – a bad situation. Lincoln’s “protective tariffs” of 1861 may have contributed to Southern succession and the start of the civil war. While there is a benefit to trade, it seems to me that some modest tariff (10%, 20%) is better for us — a conclusion that Trump seems to have intuited, and that many other countries seem to have come to, too (see map-chart above). As for the academic economists, I note that they also predicted that stock market crash should Trump be elected; it’s gone nearly straight up since November 8, 2016. For experts on money, I find that most economists are not rich.

Robert E. Buxbaum, March 27, 2017. I learned such economics as I have from my one course in economics, plus comic books like the classic “Once upon a dime” produced by the New York Federal Reserve. Among the lessons learned: that money is a distraction, just a more convenient way to carry around a suit, 100 lbs of food, or a month of work. If you want to understand economics, I think it helps to work things out in terms of barter. As

Arrested for decriminalized possession

The arrest rate for marijuana is hardly down despite widespread decriminalization, but use is up. decriminalization, but use is up. A rate that exceeds that for all violent crime.

Despite years of marijuana decriminalization, arrest rates for marijuana are up from 20-25 years ago, and hardly down from last year. Why?

There are a couple of troubling patterns in US drug arrests. For one, though marijuana has been decriminalized in much of the USA, marijuana arrest rates are hardly down from five years ago, and higher than 20-30 years ago — see graph at right. Besides that, it’s still mostly black-people and Latinos arrested. And the crime is, 4/5 the of the time, drug possession, not sale.

At the same time that violent crime rates are falling, marijuana possession arrests are rising (see graph below). Currently, according to FBI statistics,  more people are arrested for marijuana possession than for all violent crime combined. You’d expect it would not be this way, and a question I’d like to explore is why. But first, let’s look at more data. I note that part of an explanation is that marijuana use is up (18% in 2015 vs 12% in 1990). This still doesn’t explain the racial imbalance but it could explain the general rise. Marijuana isn’t quite legal, and if use is up, you’d expect arrests to be up. But even here, something is fishy: use rates are the same as in 1980, 35+ years ago in the midst of the “war on drugs,” but arrest rates have more than doubled since. Why? Take New York City as an example, 17,762 people were arrested for low-level marijuana possession in 2016 (smoking in public or possession of 25 gm to 2 oz). The low-level arrest rate is twice the national average in this Democratic-bastion city, where the drug was decriminalized years ago. Arrest rates in NYC went up an additional 10% in 2016, with black people arrested at 11 times the rate of white people. How could this be?

The race discrepancy of arrests persists across the US. Though black citizens use drugs only 15% or so more often than whites, and make up only 13% of the US population, they are arrested for drugs about three times as often and incarcerated about 4 times as often. It’s mostly for marijuana possession too, and the discrepancy varies very strongly by location In Louisiana, Illinois, and New York City arrests are particularly weighted to people of color. When New York City police precinct captains were asked about this, they explained that their instructions come from above. It’s a curious answer, I’d say, reflecting perhaps their dislike of the mayor.

Drug arrests are mostly for possession, not sale, and the spread is rising.

Drug arrests are mostly for possession, not sale and the spread is rising. More than half the time, it’s marijuana.

One of the race-affecting instructions is that the police are instructed to patrol black neighborhoods, but not the student unions of majority-white colleges like NYU. They’re mandated to stop and search junky cars but not nice ones, and to search people who have outstanding parking tickets, but not generally. They even get raises that depend on the number of tickets given, a practice that does not lead to a pattern of looking the other way — one many New Yorkers would prefer. Another issue: in many states, including New York, the police can keep money or cars, if they can claim that the asset was purchased with drug money or used in the drug trade. This leads to a practice where the city budget benefits when the police arrest persons they don’t expect will be convicted. It’s a practice called civil asset forfeiture, one lampooned, on Last Week Tonight, but jealously guarded. Since it is near impossible to prove that the money or car was not used in any way illegally, once they arrest someone, the police can expect to keep his or her money or cars indefinitely. The annoyance of lawyers perhaps encourages the arrest of people who do not seem to have them — people of color. New York mayor deBlassio justifies his arrests as a way to protect the neighborhoods, as his version of former mayor, Guilliani’s broken window approach. Maybe. But I think the profit motive is at least as relevant.

drug arrests hit black folks a lot more than white

Drug arrests hit black folks a lot more than white.

I note that strict justice tends to land hardest on the poor and defenseless. I also note that many important people have used marijuana without it damaging their lives in any obvious way. Both Jeb! Bush and Bill Clinton claimed to have smoked it; as did Barak Obama, Al Gore, and the Beatles. My bottom line: while marijuana decriminalization is worthwhile, it must go along with the repeal of civil asset forfeiture laws, and other means that make arrests into profit centers – or so it appears to me. Otherwise we’ll keep on flushing lives down the drain for no good reason.

Robert Buxbaum, March 6, 2017. I’ve previously blogged about the structure of criminal sentencing, coming to conclude that the least strict sentence that does the job is to be preferred. I also ran for water commissioner in 2016.

Rethinking fluoride in drinking water

Fluoride is a poison, toxic tor a small child in doses of 500 mg, and toxic to an adult in doses of a few thousand mg. It is a commonly used rat poison that kills by robbing the brain of the ability to absorb oxygen. In the form of hydrofluoric acid, it is responsible for the deaths of more famous chemists than any other single compound: Humphrey Davy died trying to isolate fluorine; Paul Louyet and Jerome Nickles, too. Thomas Knox nearly died, and Henri Moissan’s life was shortened. Louis-Joseph Gay Lussac, George Knox, and Louis- Jacques Thenard suffered burns and similar, George Knox was bedridden for three years. Among the symptoms of fluoride poisoning is severe joint pain and that your brain turns blue.

In low doses, though, fluoride is thought to be safe and beneficial. This is a phenomenon known as hormesis. Many things that are toxic at high doses are beneficial at low. Most drugs fall into this category, and chemotherapy works this way. Diseased cells are usually less-heartythan healthy ones. Fluoride is associated with strong teeth, and few cavities. It is found at ppm levels many well water systems, and has shown no sign of toxicity, either for humans or animals at these ppm levels. Following guidelines set by the AMA, we’ve been putting fluoride in drinking water since the 1960s at concentrations between 0.7 and 1.2 ppm. We have seen no deaths or clear evidence of any injury from this, but there has been controversy. Much of the controversy stems from a Chinese study that links fluoride to diminished brain function, and passivity (Anti-fluoriders falsely attribute this finding to a Harvard researcher, but the Harvard study merely cites the Chinese). The American dental association strongly maintains that worries based on this study are groundless, and that the advantage in lower cavities more than off-sets any other risks. Notwithstanding, I thought I’d take another look. The typical US adult consumes 1-3 mg/day the result of drinking 1-3 liters of fluoridated water (1 ppm = 1 mg/liter). This < 1/1000 the toxic dose,

While there is no evidence that people who drink high-fluoride well water are any less-healthy than those who drink city water, or distilled / filtered water, that does not mean that our city levels are ideal. Two months ago, while running for water commissioner, I was asked about fluoride, and said I would look into it. Things have changed since the 1960s: our nutrition has changed, we have vitamin D milk, and our toothpastes now contain fluoride. My sense is we can reduce the water concentration. One indication that this concentration could be reduced is shown below. Many industrial countries that don’t add fluoride have similar tooth decay rates to the US.

World Health Organization data on tooth decay and fluoridation.

World Health Organization data on tooth decay and fluoridation.

This chart should not be read to suggest that fluoride doesn’t help; all the countries shown use fluoride toothpaste, and some give out fluoride pills, too. And some countries that don’t add fluoride have higher levels of cavities. Norway and Japan, for example, don’t add fluoride and have 50% more cavities than we do. Germany doesn’t add fluoride, and has fewer cavities, but they hand out fluoride pills, To me, the chart suggests that our levels should go down, though not to zero. In 2015, the Department of Health recommend lowering the fluoride level to 0.7 ppm, the lower end of the previous range, but my sense from the experience of Europe is that we should go lower still. If I were to pick, I’d choose 1/2 the original dose: 0.6 to 0.35 ppm. I’d then revisit in another 15 years.

Having picked my target fluoride concentration, I checked to see the levels in use in Oakland county, MI, the county I was running in. I was happy to discover that most of the water the county drinks, that provided by Detroit Water and Sewage, NOCWA and SOCWA already have decreased levels of 0.43-0.55 ppm. These are just in the range I would have picked, Fluoride concentrations are higher in towns that use well water, about  0.65-0.85 ppm. I do not know if this is because the well water comes from the ground with these fluoride concentrations or if the towns add, aiming at the Department of Health target. In either case, I don’t find these levels alarming. If you live none of these town, or outside of Oakland county, check your fluoride levels. If they seem high, write to your water commissioner. You can also try switching from fluoride toothpaste to non-fluoride, or baking soda. In any case, remember to brush. That does make a difference, and it’s completely non-toxic.

Robert Buxbaum, January 9, 2017. I discuss chloride addition a bit in this essay. As a side issue, a main mechanism of sewer pipe decay seems related to tooth decay. That is the roofs of pipe attract acid-producing, cavity causing bacteria that live off of the foul sewer gas. The remedies for pipe erosion include cleaning your pipes regularly, having them checked by a professional once per year, and repairing cavities early. Here too, it seems high fluoride cement resists cavities better.

A British tradition of inefficiency and silliness

While many British industries are forward thinking and reasonably efficient, i find Britons take particular pride in traditional craftsmanship. That is, while the Swiss seem to take no particular pride in their coo-coo clocks, the British positively glory in their handmade products: hand-woven, tweed jackets, expensive suits, expensive whiskey, and hand-cut diamonds. To me, an American-trained engineer, “traditional craftsmanship,” of this sort is another way of saying silly and in-efficient. Not having a better explanation, I associate these behaviors with the decline of English power in the 20th century. England went from financial and military preëminence in 1900 to second-tier status a century later. It’s an amazing change that I credit to tradition-bound inefficiency — and socialism.

Queen Elizabeth and Edward VII give the Nazi solute.

Queen Elizabeth and Edward VII give the Nazi solute.

Britain is one of only two major industrial nations to have a monarch and the only one where the monarch is an actual ambassador. The British Monarchy is not all bad, but it’s certainly inefficient. Britain benefits from the major royals, the Queen and crown prince in terms of tourism and good will. In this she’s rather like our Mickey Mouse or Disneyland. The problem for England has to do with the other royals, We don’t spend anything on Mickey’s second cousins or grandchildren. And we don’t elevate Micky’s relatives to military or political prominence. England’s royal leaders gave it horrors like the charge of the light brigade in the Crimean war (and the Crimean war itself), Natzi-ism doing WWII, the Grand Panjandrum in WWII, and the attack on Bunker Hill. There is a silliness to its imperialism via a Busby-hatted military. Britain’s powdered-wigged jurors are equally silly.

Per hour worker productivity in the industrial world.

Per hour worker productivity in the industrial world.

As the chart shows, England has the second lowest per-hour productivity of the industrial world. Japan, the other industrial giant with a monarch, has the lowest. They do far better per worker-year because they work an ungodly number of hours per year. French and German workers produce 20+% more per hour: enough that they can take off a month each year and still do as well. Much of the productivity advantage of France, Germany, and the US derive from manufacturing and management flexibility. US Management does not favor as narrow a gene pool. Our workers are allowed real input into equipment and product decisions, and are given a real chance to move up. The result is new products, efficient manufacture, and less class-struggle.

The upside of British manufacturing tradition is the historical cachet of English products. Americans and Germans have been willing to pay more for the historical patina of British whiskey, suits, and cars. Products benefit from historical connection. British suits remind one of the king, or of James Bond; British cars maintain a certain style, avoiding fads of the era: fins on cars, or cup-holders, and electric accessories. A lack of change produces a lack of flaws too, perhaps the main things keeping Britain from declining faster. A lack of flaws is particularly worthwhile in some industries, like banking and diamonds, products that have provided an increasing share of Britain’s foreign exchange. The down-side is a non-competitive military, a horrible food industry, and an economy that depends, increasingly on oil.

Britain has a low birthrate too, due in part to low social mobility, I suspect. Social mobility looked like it would get worse when Britain joined the European Union. An influx of foreign workers entered taking key jobs including those that with historical cachet. The Brits reacted by voting to leave the EC, a vote that seems to have taken the upper class by surprise, With Brexit, we can hope to see many years more of manufacturing by the traditional and silly.

Robert Buxbaum, December 31, 2016. I’ve also written about art, good and bad, about the US aesthetic of strength, about the French tradition of innovation, And about European vs US education.

How do you drain a swamp, literally

The Trump campaign has been claiming it wants to “drain the swamp,” that is to dispossess Washington’s inbred army of academic consultants, lobbyists, and reporter-spin doctors, but the motto got me to think, how would you drain a swamp literally? First some technical definitions. Technically speaking, a swamp is a type of wetland distinct from a marsh in that it has no significant flow. The water just, sort-of sits there. A swamp is also unlike a fen or a bog in that swamp water contains enough oxygen to support life: frogs, mosquitos, alligators,., while a fen or bog does not. Common speech ignores these distinctions, and so will I.report__jaguars_running_back_denard_robi_0_5329357_ver1-0_640_360

If you want to drain a large swamp, such as The Great Dismal Swamp that covered the south-east US, or the smaller, but still large, Hubbard Swamp that covered south-eastern Oakland county, MI, the classic way is to dig a system of open channel ditches that serve as artificial rivers. These ditches are called drains, and I suppose the phrase, “drain the swamp comes” from them. As late as the 1956 drain code, the width of these ditch-drains was specified in units of rods. A rod is 16.5 feet, or 1/4 of a chain, that is 1/4 the length of the 66′ surveyor’s chains used in the 1700’s to 1800’s. Go here for the why these odd engineering units exist and persist. Typically, 1/4 rod wide ditches are still used for roadside drainage, but to drain a swamp, the still-used, 1956 code calls for a minimum of a 1 rod width at the top and a minimum of 1/4 rod, 4 feet, at the bottom. The sides are to slope no more than 1:1. This geometry is needed. experience shows, to slow the flow, avoid soil erosion and help keep the sides from caving in. It is not unusual to add one or more weirs to control and slow the flow. These weirs also help you measure the flow.

The main drain for Royal Oak and Warren townships, about 50 square miles, is the Red Run drain. For its underground length, it is 66 foot wide, a full chain, and 25 feet deep (1.5 rods). When it emerges from under ground at Dequindre rd, it expands to a 2 chain wide, open ditch. The Red Run ditch has no weirs resulting in regular erosion and a regular need for dredging; I suspect the walls are too steep too. Our county needs more and more drainage as more and more housing and asphalt is put in. Asphalt reduces rain absorption and makes for flash floods following any rain of more than 1″. The red run should be improved, and more drains are needed, or Oakland county will become a flood-prone, asphalt swamp.

Classic ditch drain, Bloomfiled MI. Notice the culverts used to convey water from the ditch under the road.

Small ditch drain, Bloomfield, MI. The ditches connect to others and to the rivers via the culvert pipes in the left and center of the picture. A cheap solution to flooding.

Ditch drains are among the cheapest ways to drain a swamp. Standard sizes cost only about $10/lineal foot, but they are pretty ugly in my opinion, they fill up with garbage, and they tend to be unsafe. Jaguars running back Denard Robinson was lucky to have survived running into one in his car (above) earlier this year. Ditches can become mosquito breeding grounds, too and many communities have opted for a more expensive option: buried, concrete or metal culverts. These are safer for the motorist, but reduce ground absorption and flow. In many places, we’ve buried whole rivers. We’ve no obvious swamps but instead we get regular basement and road flooding, as the culverts still have combined storm and sanitary (toilet) sewage, and as more and more storm water is sent through the same old culverts.

Given my choice I would separate the sewers, add weirs to some of our ditch drains, weirs, daylight some of the hidden rivers, and put in French drains and bioswales, where appropriate. These are safer and better looking than ditches but they tend to cost about $100 per lineal foot, about 10x more than ditch drains. This is still 70x cheaper than the $7000/ft, combined sewage tunnel cisterns that our current Oakland water commissioner has been putting in. His tunnel cisterns cost about $13/gallon of water retention, and continue to cause traffic blockage.

Bald cypress swamp

Bald cypress in a bog-swamp with tree knees in foreground.

Another solution is trees, perhaps the cheapest solution to drain a small swamp or retention pond, A full-grown tree will transpire hundreds of gallons per day into the air, and they require no conduit connecting the groundwater to a river. Trees look nice and can complement French drains and bioswales where there is drainage to river. You want a species that is water tolerant, low maintenance, and has exceptional transpiration. Options include the river birch, the red maple, and my favorite, the bald cypress (picture). Bald cypress trees can live over 1000 years and can grow over 150 feet tall — generally straight up. When grown in low-oxygen, bog water, they develop knees — bits of root-wood that extend above the water. These aid oxygen absorption and improve tree-stability. Cypress trees were used extensively to drain the swamps of Israel, and hollowed-out cypress logs were the first pipes used to carry Detroit drinking water. Some of these pipes remain; they are remarkably rot-resistant.

Robert E Buxbaum, December 2, 2016. I ran for water commissioner of Oakland county, MI 2016, and lost. I’m an engineer. While teaching at Michigan State, I got an appreciation for what you could do with trees, grasses, and drains.

The straight flush

I’m not the wildest libertarian, but I’d like to see states rights extended to Michigan’s toilets and showers. Some twenty years ago, the federal government mandated that the maximum toilet flush volume could be only 1.6 gallons, the same as Canada. They also mandated a maximum shower-flow law, memorialized in this Seinfeld episode. Like the characters in those shows, I think this is government over-reach of states rights covered by the 10th amendment. As I understand it, the only powers of the federal government over states are in areas specifically in the constitution, in areas of civil rights (the 13th Amendment), or in areas of restraint of trade (the 14th Amendment). None of that applies here, IMHO. It seems to me that the states should be able to determine their own flush and shower volumes.

If this happen to you often, you might want to use more water for each flush, or  at least a different brand of toilet paper.

If your toilet clogs often, you might want to use more flush water, or at least a different brand of toilet paper.

There is a good reason for allowing larger flushes, too in a state with lots of water. People whose toilets have long, older pipe runs find that there is insufficient flow to carry their stuff to the city mains. Their older pipes were designed to work with 3.5 gallon flushes. When you flush with only 1.6 gallons, the waste only goes part way down and eventually you get a clog. It’s an issue known to every plumber – one that goes away with more flush volume.

Given my choice, I’d like to change the flush law through the legislature, perhaps following a test case in the Supreme court. Similar legislation is in progress with marijuana decriminalization, but perhaps it’s too much to ask folks to risk imprisonment for a better shower or flush. Unless one of my readers feels like violating the federal law to become the test case, I can suggest some things you can do immediately. When it comes to your shower, you’ll find you can modify the flow by buying a model with a flow restrictor and “ahem” accidentally losing the restrictor. When it comes to your toilet, I don’t recommend buying an older, larger tank. Those old tanks look old. A simpler method is to find a new flush cistern with a larger drain hole and flapper. The drain hole and flapper in most toilet tanks is only 2″ in diameter, but some have a full 3″ hole and valve. Bigger hole, more flush power. Perfectly legal. And then there’s the poor-man solution: keep a bucket or washing cup nearby. If the flush looks problematic, pour the extra water in to help the stuff go down. It works.

A washing cup.

A washing cup. An extra liter for those difficult flushes.

Aside from these suggestions, if you have clog trouble, you should make sure to use only toilet paper, and not facial tissues or flushable wipes. If you do use these alternatives, only use one sheet at a flush, and the rest TP, and make sure your brand of wipe is really flushable. Given my choice, I would like see folks in Michigan have freedom of the flush. Let them install a larger tank if they like: 2 gallons, or 2.5; and I’d like to see them able to use Newman’s Serbian shower heads too, if it suits them. What do you folks think?

Dr. Robert E. Buxbaum, November 3, 2016. I’m running for Oakland county MI water resources commissioner. I’m for protecting our water supply, for better sewage treatment, and small wetlands for flood control. Among my less-normative views, I’ve also suggested changing the state bird to the turkey, and ending daylight savings time.

Weir dams to slow the flow and save our lakes

As part of explaining why I want to add weir dams to the Red Run drain, and some other of our Oakland county drains, I posed the following math/ engineering problem: if a weir dam is used to double the depth of water in a drain, show that this increases the residence time by a factor of 2.8 and reduces the flow speed by 1/2.8. Here is my solution.

A series of weir dams on Blackman Stream, Maine. Mine would be about as tall, but somewhat further apart.

A series of weir dams on Blackman Stream, Maine. Mine would be about as tall, but wider and further apart. The dams provide oxygenation and hold back sludge.

Let’s assume the shape of the bottom of the drain is a parabola, e.g. y = x, and that the dams are spaced far enough apart that their volume is small compared to the volume of water. We now use integral calculus to calculate how the volume of water per mile, V is affected by water height:  V =2XY- ∫ y dx = 2XY- 2/3 X3 =  4/3 Y√Y. Here, capital Y is the height of water in the drain, and capital X is the horizontal distance of the water edge from the drain centerline. For a parabolic-bottomed drain, if you double the height Y, you increase the volume of water per mile by 2√2. That’s 2.83, or about 2.8 once you assume some volume to the dams.

To find how this affects residence time and velocity, note that the dam does not affect the volumetric flow rate, Q (gallons per hour). If we measure V in gallons per mile of drain, we find that the residence time per mile of drain (hours) is V/Q and that the speed (miles per hour) is Q/V. Increasing V by 2.8 increases the residence time by 2.8 and decreases the speed to 1/2.8 of its former value.

Why is this important? Decreasing the flow speed by even a little decreases the soil erosion by a lot. The hydrodynamic lift pressure on rocks or soil is proportional to flow speed-squared. Also, the more residence time and the more oxygen in the water, the more bio-remediation takes place in the drain. The dams slow the flow and promote oxygenation by the splashing over the weirs. Cells, bugs and fish do the rest; e.g. -HCOH- + O2 –> CO2 + H2O. Without oxygen, the fish die of suffocation, and this is a problem we’re already seeing in Lake St. Clair. Adding a dam saves the fish and turns the run into a living waterway instead of a smelly sewer. Of course, more is needed to take care of really major flood-rains. If all we provide is a weir, the water will rise far over the top, and the run will erode no better (or worse) than it did before. To reduce the speed during those major flood events, I would like to add a low bicycle path and some flood-zone picnic areas: just what you’d see on Michigan State’s campus, by the river.

Dr. Robert E. Buxbaum, May 12, 2016. I’d also like to daylight some rivers, and separate our storm and toilet sewage, but those are longer-term projects. Elect me water commissioner.

A run runs through it

The word ‘run’ appears to be a Michigan dialect for small river. Perhaps Michigan’s most famous run is the Willow run, where the airport is. Currently, almost all of our runs are unrecognizable, they are either trapped in pipes underground, or so dredged out and poisoned that they are more properly called sewers. If I’m elected Oakland county water resources commissioner (drain commissioner) I’d like to free some of these runs, and detoxify them.

These branches of the red run flow beneath the surface of Royal Oak with the main section beneath Vinsetta Blvd.

These branches of the red run flow beneath the surface of Royal Oak with the main section beneath Vinsetta Blvd.

Consider this historical map of Royal Oak. It shows two  river branches, currently under ground. Back in the day, these were known as the north and south branch of the Red run. The south branch is fed by the Washington creek and the small run, now under ground, with the main branch of the run crossing Woodward ave at Catalpa st. These runs only appear above ground in Warren, MI, miles away, as a polluted sewer. But in Royal Oak they should still be clean. If they were partially freed. That is if the channel were exposed to air again to provide small wetlands along the original path — along Vinsetta Blvd, for example. Vinsetta Blvd. already has concrete bridges to show where the run originally ran. The small wetlands would provide habitat for birds and butterflies, and would provide storm relief and some bioremediation as well. After a heavy rain, most of the water would be absorbed into the ground, while the existing pipes carry away the rest.

Robert E. Buxbaum, March 21, 2016

Follow the feces; how to stop the poisoning

In Oakland county, we regularly poison our basements and our lake St Clair beaches with feces — and potentially our water supply too. We have a combined storm and sanitary sewer system that mixes feces-laden sanitary sewage with rainwater, and our pipes are too old and small to handle the amount of storm water from our larger rains. A group called “Save Lake St. Clair” is up in arms but the current commissioner claims the fault is not his. It’s global warming, he says, and the rains are bigger now. Maybe, or maybe the fault is wealth: more and more of the county is covered by asphalt, so less rain water can soak in the ground. Whatever the cause, the Commissioner should deal with it (I’m running for water commissioner, BTW). As the chart of toxic outfalls shows, we’ve had regular toxic sewage discharges into the Red Run basically every other week, with no exceptional rainfalls: only 0.9″ to 1.42″.

Toxic outfalls into lake St Clair, Feb 20 to Mar 20, 2016. There were also two outfalls into the Rouge in this period. These are too many to claim they are once in hundred-year events.

Toxic outfalls into lake St Clair, Feb 20 to Mar 20, 2016. There were also two outfalls into the Rouge in this period. These are too many to claim they are once in hundred-year events.

Because we have a combined system, the liquid level rises in our sewers whenever it rains. When the level is above the level of a basement floor drain, mixed sewage comes up into the basement. A mix of storm water comes up mixed with poop and anything else you and your neighbors flush down. Mixed sewage can come up even if the sewers were separate, but far less often. Currently most of the dry outfall from our old, combined sewers is sent to Detroit’s Waste Water Treatment plant near Zug Island. When there is a heavy rain, the pipe to Zug is overwhelmed. We avoid flooding your basement every other week by diverting as much as we can of the mixed storm water and septic sewage to lake St. Clair. This is poop, barely treated, and the fishermen and environmentalists hate it.

The beaches along Lake St Clair are closed every other week: whenever the pipes to Detroit start getting overwhelmed, whenever there is about 1″ or rain. Worse yet, the sewage is enters the lake just upstream of the water intake on Belle Isle, see map below. Overflow sewage follows the red lines entering the Clinton River through the GW Kuhn — Red Run Drain or through the North Branch off the River. From there it flows out into Lake St. Clair near Selfridge ANG, generally hugging the Michigan shore of the lake, following the light blue line to poison the metro beaches. it enters the water intake for the majority of Oakland County at the Belle Island water intakes, lower left.

Follow the feces to see why our beeches are polluted. It's just plain incompetence.

The storm water plus septic sewage mix is not dumped raw into lake St. Clair, but it’s nearly raw. The only treatment is to be spritzed with bleach in the Red Run Drain. The result is mats of black gunk with floating turds, toilet paper and tampons. This water is filtered before we drink it, and it’s sprayed with more chlorine, but that’s not OK. We can do much better than this. We don’t have to regularly dump poop into the river just upstream of our water intake. I favor a two-prong solution.

The first, quick solution is to have better pumps to send the sewage to Detroit. This is surprisingly expensive since we still have to treat the rain water. Also it doesn’t take care of the biggest rains; there is a limit to what our pipes will handle, but it stops some basement flooding, and it avoids some poisoning of our beaches and drinking water.

This is our combined sewer system showing a tunnel cistern (yuk) and the outflow into the Red Run. We can do better

A combined sewer system showing a tunnel cistern. Outflow goes into the Red Run. We can do better.

A second, longer term solution is to disentangle the septic from the storm sewers. My approach would be to do this in small steps, beginning by diverting some storm runoff into small wetlands or French drain retention. Separating the sewers this way is cheaper and more environmentally sound than trying to treat the mixed flow in Detroit, and the wetlands and drains would provide pleasant park spaces, but the project will take decades to complete. If done right, this would save quite a lot over sending so much liquid to Detroit, and it’s the real solution to worries about your floor drains back-flowing toxic sludge into your basement.

The incumbent, I fear, has little clue about drainage or bio-treatment. His solution is to build a $40MM tunnel cistern along Middlebelt road. This cistern only holds 3 MM gallons, less than 1/100 of the volume needed for even a moderate rain. Besides, at $13/gallon of storage, it is very costly solution compared to my preference — a French drain (costs about 25¢/gallon of storage). The incumbents cistern has closed off traffic for months between 12 and 13 mile, and is expected to continue for a year, until January, 2017. It doesn’t provide any bio-cleaning, unlike a French drain, and the cistern leaks. Currently groundwater is leaking in. This has caused the lowering of the water table and the closure of private wells. If the leak isn’t fixed , the cistern will leak septic sewage into the groundwater, potentially infecting people for miles around with typhus, cholera, and all sorts of 3rd world plagues.

There is also an explosion hazard to the incumbent’s approach. A tunnel cistern like this blew up near my undergraduate college sending manhole covers flying. This version has much bigger manhole covers: 15′ cement, not 2′ steel. If someone pours gasoline down the drain during a rainstorm and if a match went in later, the result could be deadly. The people building these projects are the same ones who fund the incumbent’s campaign, and I suspect they influenced him for this mis-chosen approach. They are the folks I fear he goes to for engineering advice. If you’d like to see a change for the better. Elect me, Elect an engineer.

Dr. Robert E. Buxbaum, March 26, 2016. Go here to volunteer or contribute.

if everyone agrees, something is wrong

I thought I’d try to semi-derive, and explain a remarkable mathematical paper that was published last month in The Proceedings of the Royal Society A (see full paper here). The paper demonstrates that too much agreement about a thing is counter-indicative of the thing being true. Unless an observation is blindingly obvious, near 100% agreement suggests there is a hidden flaw or conspiracy, perhaps unknown to the observers. This paper has broad application, but I thought the presentation was too confusing for most people to make use of, even those with a background in mathematics, science, or engineering. And the popular versions press versions didn’t even try to be useful. So here’s my shot:

Figure 2 from the original paper. For a method that is 80% accurate, you get your maximum reliability at the third to fifth witness. Beyond that, more agreement suggest a flaw in the people or procedure.

Figure 2 from the original paper. For a method that is 80% accurate, you get your maximum reliability at 3-5 witnesses. More agreement suggests a flaw in the people or procedure.

I will discuss only on specific application, the second one mentioned in the paper, crime (read the paper for others). Lets say there’s been a crime with several witnesses. The police line up a half-dozen, equal (?) suspects, and show them to the first witness. Lets say the first witness points to one of the suspects, the police will not arrest on this because they know that people correctly identify suspects only about 40% of the time, and incorrectly identify perhaps 10% (the say they don’t know or can’t remember the remaining 50% of time). The original paper includes the actual factions here; they’re similar. Since the witness pointed to someone, you already know he/she isn’t among the 50% who don’t know. But you don’t know if this witness is among the 40% who identify right or the 10% who identify wrong. Our confidence that this is the criminal is thus .4/(.4 +.1) = .8, or 80%.

Now you bring in the second witness. If this person identifies the same suspect, your confidence increases; to roughly (.4)2/(.42+.12) = .941,  or 94.1%. This is enough to make an arrest, but let’s say you have ten more witnesses, and all identify this same person. You might first think that this must be the guy with a confidence of (.4)10/(.410+.110) = 99.99999%, but then you wonder how unlikely it is to find ten people who identify correctly when, as we mentioned, each person has only a 40% chance. The chance of all ten witnesses identifying a suspect right is small: (.4)10 = .000104 or 0.01%. This fraction is smaller than the likelihood of having a crooked cop or a screw up the line-up (only one suspect had the right jacket, say). If crooked cops and systemic errors show up 1% of the time, and point to the correct fellow only 15% of these, we find that the chance of being right if ten out of ten agree is (0.0015 +(.4)10)/( .01+ .410+.110) = .16%. Total agreement on guilt suggests the fellow is innocent!

The graph above, the second in the paper, presents a generalization of the math I just presented: n identical tests of 80% accuracy and three different likelihoods of systemic failure. If this systemic failure rate is 1% and the chance of the error pointing right or wrong is 50/50, the chance of being right is P = (.005+ .4n)/(.01 +.4n+.1n), and is the red curve in the graph above. The authors find you get your maximum reliability when there are two to four agreeing witness.

Confidence of guilt as related to the number of judges that agree and your confidence in the integrity of the judges.

Confidence of guilt as related to the number of judges that agree and the integrity of the judges.

The Royal Society article went on to a approve of a feature of Jewish capital-punishment law. In Jewish law, capital cases are tried by 23 judges. To convict a super majority (13) must find guilty, but if all 23 judges agree on guilt the court pronounces innocent (see chart, or an anecdote about Justice Antonin Scalia). My suspicion, by the way, is that more than 1% of judges and police are crooked or inept, and that the same applies to scientific analysis of mental diseases like diagnosing ADHD or autism, and predictions about stocks or climate change. (Do 98% of scientists really agree independently?). Perhaps there are so many people in US prisons, because of excessive agreement and inaccurate witnesses, e.g Ruben Carter. I suspect the agreement on climate experts is a similar sham.

Robert Buxbaum, March 11, 2016. Here are some thoughts on how to do science right. Here is some climate data: can you spot a clear pattern of man-made change?