Category Archives: Heat transfer

Global warming takes a 15 year rest

I have long thought that global climate change was chaotic, rather than steadily warming. Global temperatures show self-similar (fractal) variation with time and long-term cycles; they also show strange attractors generally states including ice ages and El Niño events. These are sudden rests of the global temperature pattern, classic symptoms of chaos. The standard models of global warming is does not predict El Niño and other chaotic events, and thus are fundamentally wrong. The models assume that a steady amount of sun heat reaches the earth, while a decreasing amount leaves, held in by increasing amounts of man-produced CO2 (carbon dioxide) in the atmosphere. These models are “tweaked” to match the observed temperature to the CO2 content of the atmosphere from 1930 to about 2004. In the movie “An Inconvenient Truth” Al Gore uses these models to predict massive arctic melting leading to a 20 foot rise in sea levels by 2100. To the embarrassment of Al Gore, and the relief of everyone else, though COconcentrations continue to rise, global warming took a 15 year break starting shortly before the movie came out, and the sea level is, more-or-less where it was except for temporary changes during periodic El Niño cycles.

Global temperature variation Fifteen years and four El Niño cycles, with little obvious change. Most models predict .25°C/decade.

Fifteen years of global temperature variation to June 2013; 4 El Niños but no sign of a long-term change.

Hans von Storch, a German expert on global warming, told the German newspaper, der Spiegel: “We’re facing a puzzle. Recent CO2 emissions have actually risen even more steeply than we feared. As a result, according to most climate models, we should have seen temperatures rise by around 0.25 degrees Celsius (0.45 degrees Fahrenheit) over the past 10 years. That hasn’t happened. [Further], according to the models, the Mediterranean region will grow drier all year round. At the moment, however, there is actually more rain there in the fall months than there used to be. We will need to observe further developments closely in the coming years.”

Aside from the lack of warming for the last 15 years, von Storch mentions that there has been no increase in severe weather. You might find that surprising given the news reports; still it’s so. Storms are caused by temperature and humidity differences, and these have not changed. (Click here to see why tornadoes lift stuff up).

At this point, I should mention that the majority of global warming experts do not see a problem with the 15 year pause. Global temperatures have been rising unsteadily since 1900, and even von Storch expects this trend to continue — sooner or later. I do see a problem, though, highlighted by the various chaotic changes that are left out of the models. A source of the chaos, and a fundamental problem with the models could be with how they treat the effects of water vapor. When uncondensed, water vapor acts as a very strong thermal blanket; it allows the sun’s light in, but prevents the heat energy from radiating out. CObehaves the same way, but weaker (there’s less of it).

More water vapor enters the air as the planet warms, and this should amplify the CO2 -caused run-away heating except for one thing. Every now and again, the water vapor condenses into clouds, and then (sometimes) falls as rain or show. Clouds and snow reflect the incoming sunlight, and this leads to global cooling. Rain and snow drive water vapor from the air, and this leads to accelerated global cooling. To the extent that clouds are chaotic, and out of man’s control, the global climate should be chaotic too. So far, no one has a very good global model for cloud formation, or for rain and snowfall, but it’s well accepted that these phenomena are chaotic and self-similar (each part of a cloud looks like the whole). Clouds may also admit “the butterfly effect” where a butterfly in China can cause a hurricane in New Jersey if it flaps at the right time.

For those wishing to examine the longer-range view, here’s a thermal history of central England since 1659, Oliver Cromwell’s time. At this scale, each peak is an El Niño. There is a lot of chaotic noise, but you can also notice either a 280 year periodicity (lat peak around 1720), or a 100 year temperature rise beginning about 1900.

Global warming; Central England Since 1659; From http://www.climate4you.com

It is not clear that the cycle is human-caused,but my hope is that it is. My sense is that the last 100 years of global warming has been a good thing; for agriculture and trade it’s far better than an ice age. If we caused it with our  CO2, we could continue to use CO2 to just balance the natural tendency toward another ice age. If it’s chaotic, as I suspect, such optimism is probably misplaced. It is very hard to get a chaotic system out of its behavior. The evidence that we’ve never moved an El Niño out of its normal period of every 3 to 7 years (expect another this year or next). If so, we should expect another ice age within the next few centuries.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Global temperatures measured from the antarctic ice showing 4 Ice ages.

Just as clouds cool the earth, you can cool your building too by painting the roof white. If you are interested in more weather-related posts, here’s why the sky is blue on earth, and why the sky on Mars is yellow.

Robert E. Buxbaum July 27, 2013 (mostly my business makes hydrogen generators and I consult on hydrogen).

Paint your factory roof white

Standing on the flat roof of my lab / factory building, I notice that virtually all of my neighbors’ roofs are black, covered by tar or bitumen. My roof was black too until three weeks ago; the roof was too hot to touch when I’d gone up to patch a leak. That’s not quite egg-frying hot, but I came to believe my repair would last longer if the roof stayed cooler. So, after sealing the leak with tar and bitumen, we added an aluminized over-layer from Ace hardware. The roof is cooler now than before, and I notice a major drop in air conditioner load and use.

My analysis of our roof coating follows; it’s for Detroit, but you can modify it for your location. Sunlight hits the earth carrying 1300 W/m2. Some 300W/m2 scatters as blue light (for why so much scatters, and why the sky is blue, see here). The rest, 1000 W/m2 or 308 Btu/ft2hr, comes through or reflects off clouds on a cloudy day and hits buildings at an angle determined by latitude, time of day, and season of the year.

Detroit is at 42° North latitude so my roof shows an angle of 42° to the sun at noon in mid spring. In summer, the angle is 20°, and in winter about 63°. The sun sinks lower on the horizon through the day, e.g. at two hours before or after noon in mid spring the angle is 51°. On a clear day, with a perfectly black roof, the heating is 308 Btu/ft2hr times the cosine of the angle.

To calculate our average roof heating, I integrated this heat over the full day’s angles using Euler’s method, and included the scatter from clouds plus an absorption factor for the blackness of the roof. The figure below shows the cloud cover for Detroit.

Average cloud cover for Detroit, month by month.

Average cloud cover for Detroit, month by month; the black line is the median cloud cover. On January 1, it is strongly overcast 60% of the time, and hardly ever clear; the median is about 98%. From http://weatherspark.com/averages/30042/Detroit-Michigan-United-States

Based on this and an assumed light absorption factor of σ = .9 for tar and σ = .2 after aluminum. I calculate an average of 105 Btu/ft2hr heating during the summer for the original black roof, and 23 Btu/ft2hr after aluminizing. Our roof is still warm, but it’s no longer hot. While most of the absorbed heat leaves the roof by black body radiation or convection, enough enters my lab through 6″ of insulation to cause me to use a lot of air conditioning. I calculate the heat entering this way from the roof temperature. In the summer, an aluminum coat is a clear winner.

Detroit High and Low Temperatures Over the ear

High and Low Temperatures For Detroit, Month by Month. From http://weatherspark.com/averages/30042/Detroit-Michigan-United-States

Detroit has a cold winter too, and these are months where I’d benefit from solar heat. I find it’s so cloudy in winter that, even with a black roof, I got less than 5 Btu/ft2hr. Aluminizing reduced this heat to 1.2 Btu/ft2hr, but it also reduces the black-body radiation leaving at night. I should find that I use less heat in winter, but perhaps more in late spring and early fall. I won’t know the details till next year, but that’s the calculation.

The REB Research laboratory is located at 12851 Capital St., Oak Park, MI 48237. We specialize in hydrogen separations and membrane reactors. By Dr. Robert Buxbaum, June 16, 2013

What’s the quality of your home insulation

By Dr. Robert E. Buxbaum, June 3, 2013

It’s common to have companies call during dinner offering to blow extra insulation into the walls and attic of your home. Those who’ve added this insulation find a small decrease in their heating and cooling bills, but generally wonder if they got their money’s worth, or perhaps if they need yet-more insulation to get the full benefit. Here’s a simple approach to comparing your home heat bill to the ideal your home can reasonably reach.

The rate of heat transfer through a wall, Qw, is proportional to the temperature difference, ∆T, to the area, A, and to the average thermal conductivity of the wall, k; it is inversely proportional to the wall thickness, ∂;

Qw = ∆T A k /∂.

For home insulation, we re-write this as Qw = ∆T A/Rw where Rw is the thermal resistance of the wall, measured (in the US) as °F/BTU/hr-ft2. Rw = ∂/k.

Lets assume that your home’s outer wall thickness is nominally 6″ thick (0.5 foot). With the best available insulation, perfectly applied, the heat loss will be somewhat higher than if the space was filled with still air, k=.024 BTU/fthr°F, a result based on molecular dynamics. For a 6″ wall, the R value, will always be less than .5/.024 = 20.8 °F/BTU/hr-ft2.. It will be much less if there are holes or air infiltration, but for practical construction with joists and sills, an Rw value of 15 or 16 is probably about as good as you’ll get with 6″ walls.

To show you how to evaluate your home, I’ll now calculate the R value of my walls based on the size of my ranch-style home (in Michigan) and our heat bills. I’ll first do this in a simplified calculation, ignoring windows, and will then repeat the calculation including the windows. Windows are found to be very important. I strongly suggest window curtains to save heat and air conditioning,

The outer wall of my home is 190 feet long, and extends about 11 feet above ground to the roof. Multiplying these dimensions gives an outer wall area of 2090 ft2. I could now add the roof area, 1750 ft2 (it’s the same as the area of the house), but since the roof is more heavily insulated than the walls, I’ll estimate that it behaves like 1410 ft2 of normal wall. I calculate there are 3500 ftof effective above-ground area for heat loss. This is the area that companies keep offering to insulate.

Between December 2011 and February 2012, our home was about 72°F inside, and the outside temperature was about 28°F. Thus, the average temperature difference between the inside and outside was about 45°F; I estimate the rate of heat loss from the above-ground part of my house, Qu = 3500 * 45/R = 157,500/Rw.

Our house has a basement too, something that no one has yet offered to insulate. While the below-ground temperature gradient is smaller, it’s less-well insulated. Our basement walls are cinderblock covered with 2″ of styrofoam plus wall-board. Our basement floor is even less well insulated: it’s just cement poured on pea-gravel. I estimate the below-ground R value is no more than 1/2 of whatever the above ground value is; thus, for calculating QB, I’ll assume a resistance of Rw/2.

The below-ground area equals the square footage of our house, 1750 ft2 but the walls extend down only about 5 feet below ground. The basement walls are thus 950 ft2 in area (5 x 190 = 950). Adding the 1750 ft2 floor area, we find a total below-ground area of 2700 ft2.

The temperature difference between the basement and the wet dirt is only about 25°F in the winter. Assuming the thermal resistance is Rw/2, I estimate the rate of heat loss from the basement, QB = 2700*25*(2/Rw) = 135,000/Rw. It appears that nearly as much heat leaves through the basement as above ground!

Between December and February 2012, our home used an average of 597 cubic feet of gas per day or 25497 BTU/hour (heat value = 1025 BTU/ ft3). QU+ Q= 292,500/Rw. Ignoring windows, I estimate Rw of my home = 292,500/25497 = 11.47.

We now add the windows. Our house has 230 ft2 of windows, most covered by curtains and/or plastic. Because of the curtains and plastic, they would have an R value of 3 except that black-body radiation tends to be very significant. I estimate our windows have an R value of 1.5; the heat loss through the windows is thus QW= 230*45/1.5 = 6900 BTU/hr, about 27% of the total. The R value for our walls is now re-estimated to be 292,500/(25497-6900) = 15.7; this is about as good as I can expect given the fixed thickness of our walls and the fact that I can not easily get an insulation conductivity lower than still air. I thus find that there will be little or no benefit to adding more above-ground wall insulation to my house.

To save heat energy, I might want to coat our windows in partially reflective plastic or draw the curtains to follow the sun. Also, since nearly half the heat left from the basement, I may want to lay a thicker carpet, or lay a reflective under-layer (a space blanket) beneath the carpet.

To improve on the above estimate, I could consider our furnace efficiency; it is perhaps only 85-90% efficient, with still-warm air leaving up the chimney. There is also some heat lost through the door being opened, and through hot water being poured down the drain. As a first guess, these heat losses are balanced by the heat added by electric usage, by the body-heat of people in the house, and by solar radiation that entered through the windows (not much for Michigan in winter). I still see no reason to add more above-ground insulation. Now that I’ve analyzed my home, it’s time for you to analyze yours.

Chaos, Stocks, and Global Warming

Two weeks ago, I discussed black-body radiation and showed how you calculate the rate of radiative heat transfer from any object. Based on this, I claimed that basal metabolism (the rate of calorie burning for people at rest) was really proportional to surface area, not weight as in most charts. I also claimed that it should be near-impossible to lose weight through exercise, and went on to explain why we cover the hot parts of our hydrogen purifiers and hydrogen generators in aluminum foil.

I’d previously discussed chaos and posted a chart of the earth’s temperature over the last 600,000 years. I’d now like to combine these discussions to give some personal (R. E. Buxbaum) thoughts on global warming.

Black-body radiation differs from normal heat transfer in that the rate is proportional to emissivity and is very sensitive to temperature. We can expect the rate of heat transfer from the sun to earth will follow these rules, and that the rate from the earth will behave similarly.

That the earth is getting warmer is seen as proof that the carbon dioxide we produce is considered proof that we are changing the earth’s emissivity so that we absorb more of the sun’s radiation while emitting less (relatively), but things are not so simple. Carbon dioxide should, indeed promote terrestrial heating, but a hotter earth should have more clouds and these clouds should reflect solar radiation, while allowing the earth’s heat to radiate into space. Also, this model would suggest slow, gradual heating beginning, perhaps in 1850, but the earth’s climate is chaotic with a fractal temperature rise that has been going on for the last 15,000 years (see figure).

Recent temperature variation as measured from the Greenland Ice. A previous post had the temperature variation over the past 600,000 years.

Recent temperature variation as measured from the Greenland Ice. Like the stock market, it shows aspects of chaos.

Over a larger time scale, the earth’s temperature looks, chaotic and cyclical (see the graph of global temperature in this post) with ice ages every 120,000 years, and chaotic, fractal variation at times spans of 100 -1000 years. The earth’s temperature is self-similar too; that is, its variation looks the same if one scales time and temperature. This is something that is seen whenever a system possess feedback and complexity. It’s seen also in the economy (below), a system with complexity and feedback.

Manufacturing Profit is typically chaotic -- something that makes it exciting.

Manufacturing Profit is typically chaotic — and seems to have cold spells very similar to the ice ages seen above.

The economy of any city is complex, and the world economy even more so. No one part changes independent of the others, and as a result we can expect to see chaotic, self-similar stock and commodity prices for the foreseeable future. As with global temperature, the economic data over a 10 year scale looks like economic data over a 100 year scale. Surprisingly,  the economic data looks similar to the earth temperature data over a 100 year or 1000 year scale. It takes a strange person to guess either consistently as both are chaotic and fractal.

gomez3

It takes a rather chaotic person to really enjoy stock trading (Seen here, Gomez Addams of the Addams Family TV show).

Clouds and ice play roles in the earth’s feedback mechanisms. Clouds tend to increase when more of the sun’s light heats the oceans, but the more clouds, the less heat gets through to the oceans. Thus clouds tend to stabilize our temperature. The effect of ice is to destabilize: the more heat that gets to the ice, the more melts and the less of the suns heat is reflected to space. There is time-delay too, caused by the melting flow of ice and ocean currents as driven by temperature differences among the ocean layers, and (it seems) by salinity. The net result, instability and chaos.

The sun has chaotic weather too. The rate of the solar reactions that heat the earth increases with temperature and density in the sun’s interior: when a volume of the sun gets hotter, the reaction rates pick up making the volume yet-hotter. The temperature keeps rising, and the heat radiated to the earth keeps increasing, until a density current develops in the sun. The hot area is then cooled by moving to the surface and the rate of solar output decreases. It is quite likely that some part of our global temperature rise derives from this chaotic variation in solar output. The ice caps of Mars are receding.

The change in martian ice could be from the sun, or it might be from Martian dust in the air. If so, it suggests yet another feedback system for the earth. When economic times age good we have more money to spend on agriculture and air pollution control. For all we know, the main feedback loops involve dust and smog in the air. Perhaps, the earth is getting warmer because we’ve got no reflective cloud of dust as in the dust-bowl days, and our cities are no longer covered by a layer of thick, black (reflective) smog. If so, we should be happy to have the extra warmth.

Most Heat Loss Is Black-Body Radiation

In a previous post I used statistical mechanics to show how you’d calculate the thermal conductivity of any gas and showed why the insulating power of the best normal insulating materials was usually identical to ambient air. That analysis only considered the motion of molecules and not of photons (black-body radiation) and thus under-predicted heat transfer in most circumstances. Though black body radiation is often ignored in chemical engineering calculations, it is often the major heat transfer mechanism, even at modest temperatures.

One can show from quantum mechanics that the radiative heat transfer between two surfaces of temperature T and To is proportional to the difference of the fourth power of the two temperatures in absolute (Kelvin) scale.

Heat transfer rate = P = A ε σ( T^4 – To^4).

Here, A is the area of the surfaces, σ is the Stefan–Boltzmann constantε is the surface emissivity, a number that is 1 for most non-metals and .3 for stainless steel.  For A measured in m2σ = 5.67×10−8 W m−2 K−4.

Infrared picture of a fellow wearing a black plastic bag on his arm. The bag is nearly transparent to heat radiation, while his eyeglasses are opaque. His hair provides some insulation.

Unlike with conduction, heat transfer does not depend on the distances between the surfaces but only on the temperature and the infra-red (IR) reflectivity. This is different from normal reflectivity as seen in the below infra-red photo of a lightly dressed person standing in a normal room. The fellow has a black plastic bag on his arm, but you can hardly see it here, as it hardly affects heat loss. His clothes, don’t do much either, but his hair and eyeglasses are reasonably effective blocks to radiative heat loss.

As an illustrative example, lets calculate the radiative and conductive heat transfer heat transfer rates of the person in the picture, assuming he has  2 m2 of surface area, an emissivity of 1, and a body and clothes temperature of about 86°F; that is, his skin/clothes temperature is 30°C or 303K in absolute. If this person stands in a room at 71.6°F, 295K, the radiative heat loss is calculated from the equation above: 2 *1* 5.67×10−8 * (8.43×109 -7.57×109) = 97.5 W. This is 23.36 cal/second or 84.1 Cal/hr or 2020 Cal/day; this is nearly the expected basal calorie use of a person this size.

The conductive heat loss is typically much smaller. As discussed previously in my analysis of curtains, the rate is inversely proportional to the heat transfer distance and proportional to the temperature difference. For the fellow in the picture, assuming he’s standing in relatively stagnant air, the heat boundary layer thickness will be about 2 cm (0.02m). Multiplying the thermal conductivity of air, 0.024 W/mK, by the surface area and the temperature difference and dividing by the boundary layer thickness, we find a Wattage of heat loss of 2*.024*(30-22)/.02 = 19.2 W. This is 16.56 Cal/hr, or 397 Cal/day: about 20% of the radiative heat loss, suggesting that some 5/6 of a sedentary person’s heat transfer may be from black body radiation.

We can expect that black-body radiation dominates conduction when looking at heat-shedding losses from hot chemical equipment because this equipment is typically much warmer than a human body. We’ve found, with our hydrogen purifiers for example, that it is critically important to choose a thermal insulation that is opaque or reflective to black body radiation. We use an infra-red opaque ceramic wrapped with aluminum foil to provide more insulation to a hot pipe than many inches of ceramic could. Aluminum has a far lower emissivity than the nonreflective surfaces of ceramic, and gold has an even lower emissivity at most temperatures.

Many popular insulation materials are not black-body opaque, and most hot surfaces are not reflectively coated. Because of this, you can find that the heat loss rate goes up as you add too much insulation. After a point, the extra insulation increases the surface area for radiation while barely reducing the surface temperature; it starts to act like a heat fin. While the space-shuttle tiles are fairly mediocre in terms of conduction, they are excellent in terms of black-body radiation.

There are applications where you want to increase heat transfer without having to resort to direct contact with corrosive chemicals or heat-transfer fluids. Often black body radiation can be used. As an example, heat transfers quite well from a cartridge heater or band heater to a piece of equipment even if they do not fit particularly tightly, especially if the outer surfaces are coated with black oxide. Black body radiation works well with stainless steel and most liquids, but most gases are nearly transparent to black body radiation. For heat transfer to most gases, it’s usually necessary to make use of turbulence or better yet, chaos.

Robert Buxbaum