Category Archives: Health

Ozone hole shrinks to near minimum recorded size

The hole in the ozone layer, prominently displayed in Al Gore’s 2006 movie, an inconvenient truth has been oscillating in size and generally shrinking since 1996. It’s currently reached its second lowest size on record.

South pole ozone hole shrinks to 2nd smallest size on record. Credit: BIRA/IASB

South pole ozone hole (blue circle in photo), shrinks to its 2nd smallest size on record. Note outline of antarctica plus end of south america and africa. Photo Credit: BIRA/IASB

The reason for the oscillation is unknown. The ozone hole is small this year, was large for the last few years, and was slightly smaller in 2002. My guess is that it will be big again in 2013. Ozone is an alternate form of oxygen containing three oxygen atoms instead of the usual two. It is an unstable compound formed by ions in the upper atmosphere acting on regular oxygen. Though the ozone concentration in the atmosphere is low, ozone is important because it helps shield people from UV radiation — radiation that could otherwise cause cancer (it also has some positive effects on bones, etc.).

An atmospheric model of ozone chemistry implicated chlorofluorocarbons (freons) as a cause of observed ozone depletion. In the 1980s, this led to countries restricting the use of freon refrigerants. Perhaps these laws are related to the shrinkage of the ozone hole, perhaps not. There has been no net decrease in the amount of chlorofluorocarbons in the atmosphere, and the models that led to banning them did not predicted the ozone oscillations we now see are common — a fault also found with models of global warming and of stock market behavior. Our best computer models do not do well with oscillatory behaviors. As Alan Greenspan quipped, our best models successfully predicted eight of the last five recessions. Whatever the cause, the good news is that the ozone hole has closed, at least temporarily. Here’s why the sky is blue, and some thoughts on sunlight, radiation and health.

by Dr. Robert E. Buxbaum, dedicated to bringing good news to the perpetually glum.

Slowing Cancer with Fish and Unhealth Food

Some 25 years ago, while still a chemical engineering professor at Michigan State University, I did some statistical work for a group in the Physiology department on the relationship between diet and cancer. The research involved giving cancer to groups of rats and feeding them different diets of the same calorie intake to see which promoted or slowed the disease. It had been determined that low-calorie diets slowed cancer growth, and were good for longevity in general, while overweight rats died young (true in humans too, by the way, though there’s a limit and starvation will kill you).

The group found that fish oil was generally good for you, but they found that there were several unhealthy foods that slowed cancer growth in rats. The statistics were clouded by the fact that cancer growth rates are not normally distributed, and I was brought in to help untangle the observations.

With help from probability paper (a favorite trick of mine), I confirmed that healthy rats fared better on healthily diets, but cancerous rats did better with some unhealth food. Sick or well, all rats did best with fish oil, and all rats did pretty well with olive oil, but the cancerous rats did better with lard or palm oil (normally an unhealthy diet) and very poorly with corn oil or canola, oils that are normally healthful. The results are published in several articles in the journals “Cancer” and “Cancer Research.”

Among vitamins, they found something similar (it was before I joined the group). Several anti-oxidizing vitamins, A, D and E made things worse for carcinogenic rats while being good for healthy rats (and for people in moderation). Moderation is key; too much of a good thing isn’t good, and a diet with too much fish oil promotes cancer.

What seems to be happening is that the cancer cells grow at the same rate with all of the equi-caloric diets, but that there was a difference the rate of natural cancer cell death. More cancer cells died when the rat was fed junk food oils than those fed a diet of corn oil and canola. Similarly, the reason anti-oxidizing vitamins hurt cancerous rats was that fewer cancer cells died when the rats were fed these vitamins. A working hypothesis is that the junk oils (and the fish oil) produced free radicals that did more damage to the cancer than to the rats. In healthy rats (and people), these free radicals are bad, promoting cell mutation, cell degradation, and sometimes cancer. But perhaps our body use these same free radicals to fight disease.

Larger amounts of vitamins A, D, and E hurt cancerous-rats by removing the free radicals they normally use fight the disease, or so our model went. Bad oils and fish-oil in moderation, with calorie intake held constant, helped slow the cancer, by a presumed mechanism of adding a few more free radicals. Fish oil, it can be assumed, killed some healthy cells in the healthy rats too, but not enough to cause problems when taken in moderation. Even healthy people are often benefitted by poisons like sunlight, coffee, alcohol and radiation.

At this point, a warning is in-order: Don’t rely on fish oil and lard as home remedies if you’ve got cancer. Rats are not people, and your calorie intake is not held artificially constant with no other treatments given. Get treated by a real doctor — he or she will use radiation and/ or real drugs, and those will form the right amount of free radicals, targeted to the right places. Our rats were given massive amounts of cancer and had no other treatment besides diet. Excess vitamin A has been shown to be bad for humans under treatment for lung cancer, and that’s perhaps because of the mechanism we imagine, or perhaps everything works by some other mechanism. However it works, a little fish in your diet is probably a good idea whether you are sick or well.

A simpler health trick is that it couldn’t hurt most Americans is a lower calorie diet, especially if combined with exercise. Dr. Mites, a colleague of mine in the department (now deceased at 90+) liked to say that, if exercise could be put into a pill, it would be the most prescribed drug in America. There are few things that would benefit most Americans more than (moderate) exercise. There was a sign in the physiology office, perhaps his doing, “If it’s physical, it’s therapy.”

Anyway these are some useful things I learned as an associate professor in the physiology department at Michigan State. I ended up writing 30-35 physiology papers, e.g. on how cells crawl and cell regulation through architecture; and I met a lot of cool people. Perhaps I’ll blog more about health, biology, the body, or about non-normal statistics and probability paper. Please tell me what you’re interested in, or give me some keen insights of your own.

Dr. Robert Buxbaum is a Chemical Engineer who mostly works in hydrogen I’ve published some 75 technical papers, including two each in Science and Nature: fancy magazines that you’d normally have to pay for, but this blog is free. August 14, 2013

Control engineer joke

What made the control engineer go crazy?

 

He got positive feedback.

Is funny because …… it’s a double entente, where both meanings are true: (1) control engineers very rarely get compliments (positive feedback); the aim of control is perfection, something that’s unachievable for a dynamic system (and generally similar to near perfection: the slope at a maximum is zero). Also (2) systems go unstable if the control feedback is positive. This can happen if the controller was set backwards, but more usually happens when the response is too fast or too extreme. Positive feedback pushes a system further to error and the process either blows up, or (more commonly) goes wildly chaotic, oscillating between two or more “strange attractor” states.

It seems to me that hypnosis, control-freak love, and cult behaviors are the result of intentionally produced positive feedback. Palsies, economic cycles, and global warming are more likely the result of unintentional positive feedback. In each case, the behavior is oscillatory chaotic.

The  normal state of Engineering is lack of feedback. Perhaps this is good because messed up feedback leads to worse results. From xykd.

Our brains give little reliable feedback on how well they work, but that may be better than strong, immediate feedback, as that could lead to bipolar instability. From xkcd. For more on this idea, see Science and Sanity, by Alfred Korzbski (mini youtube)

Control engineers tend to be male (85%), married (80%), happy people (at least they claim to be happy). Perhaps they know that near-perfection is close enough for a complex system in a dynamic world, or that one is about as happy as believes ones-self to be. It also helps that control engineer salaries are about $95,000/ year with excellent benefits and low employment turnover.

Here’s a chemical engineer joke I made up, and an older engineering joke. If you like, I’ll be happy to consult with you on the behavior of your processes.

By Dr. Robert E. Buxbaum, July 4, 2013

Hormesis, Sunshine and Radioactivity

It is often the case that something is good for you in small amounts, but bad in large amounts. As expressed by Paracelsus, an early 16th century doctor, “There is no difference between a poison and a cure: everything depends on dose.”

Aereolis Bombastus von Hoenheim (Paracelcus)

Phillipus Aureolus Theophrastus Bombastus von Hoenheim (Dr. Paracelsus).

Some obvious examples involve foods: an apple a day may keep the doctor away. Fifteen will cause deep physical problems. Alcohol, something bad in high doses, and once banned in the US, tends to promote longevity and health when consumed in moderation, 1/2-2 glasses per day. This is called “hormesis”, where the dose vs benefit curve looks like an upside down U. While it may not apply to all foods, poisons, and insults, a view called “mitridatism,” it has been shown to apply to exercise, chocolate, coffee and (most recently) sunlight.

Up until recently, the advice was to avoid direct sun because of the risk of cancer. More recent studies show that the benefits of small amounts of sunlight outweigh the risks. Health is improved by lowering blood pressure and exciting the immune system, perhaps through release of nitric oxide. At low doses, these benefits far outweigh the small chance of skin cancer. Here’s a New York Times article reviewing the health benefits of 2-6 cups of coffee per day.

A hotly debated issue is whether radiation too has a hormetic dose range. In a previous post, I noted that thyroid cancer rates down-wind of the Chernobyl disaster are lower than in the US as a whole. I thought this was a curious statistical fluke, but apparently it is not. According to a review by The Harvard Medical School, apparent health improvements have been seen among the cleanup workers at Chernobyl, and among those exposed to low levels of radiation from the atomic bombs dropped on Hiroshima and Nagasaki. The health   improvements relative to the general population could be a fluke, but after a while several flukes become a pattern.

Among the comments on my post, came this link to this scholarly summary article of several studies showing that long-term exposure to nuclear radiation below 1 Sv appears to be beneficial. One study involved an incident where a highly radioactive, Co-60 source was accidentally melted into a batch of steel that was subsequently used in the construction of apartments in Taiwan. The mistake was not discovered for over a decade, and by then the tenants had received between 0.4 and 6 Sv (far more than US law would allow). On average, they were healthier than the norm and had significantly lower cancer death rates. Supporting this is the finding, in the US, that lung cancer death rates are 35% lower in the states with the highest average radon radiation levels (Colorado, North Dakota, and Iowa) than in those with the lowest levels (Delaware, Louisiana, and California). Note: SHORT-TERM exposure to 1 Sv is NOT good for you; it will give radiation sickness, and short-term exposure to 4.5 Sv is the 50% death level

Most people in the irradiated Taiwan apartments got .2 Sv/year or less, but the same health benefit has also been shown for people living on radioactive sites in China and India where the levels were as high as .6 Sv/year (normal US background radiation is .0024 Sv/year). Similarly, virtually all animal and plant studies show that radiation appears to improve life expectancy and fecundity (fruit production, number of offspring) at dose rates as high as 1 Sv/month.

I’m not recommending 1 Sv/month for healthy people, it’s a cancer treatment dose, and will make healthy people feel sick. A possible reason it works for plants and some animals is that the radiation may kill proto- cancer, harmful bacteria, and viruses — organisms that lack the repair mechanisms of larger, more sophisticated organisms. Alternately, it could kill non-productive, benign growths allowing the more-healthy growths to do their thing. This explanation is similar to that for the benefits farmers produce by pinching off unwanted leaves and pruning unwanted branches.

It is not conclusive radiation improved human health in any of these studies. It is possible that exposed people happened to choose healthier life-styles than non-exposed people, choosing to smoke less, do more exercise, or eat fewer cheeseburgers (that, more-or-less, was my original explanation). Or it may be purely psychological: people who think they have only a few years to live, live healthier. Then again, it’s possible that radiation is healthy in small doses and maybe cheeseburgers and cigarettes are too?! Here’s a scene from “Sleeper” a 1973, science fiction, comedy movie where Woody Allan, asleep for 200 years, finds that deep fat, chocolate, and cigarettes are the best things for your health. You may not want a cigarette or a radium necklace quite yet, but based on these studies, I’m inclined to reconsider the risk/ benefit balance in favor of nuclear power.

Note: my company, REB Research makes (among other things), hydrogen getters (used to reduce the risks of radioactive waste transportation) and hydrogen separation filters (useful for cleanup of tritium from radioactive water, for fusion reactors, and to reduce the likelihood of explosions in nuclear facilities.

by Dr. Robert E. Buxbaum June 9, 2013

How Theodore Roosevelt survived being shot

Two more pictures of Theodore Roosevelt. The first is an x-ray showing the bullet he received as he entered a hall to give a 90 minute speech in 1912. How he survived the shooting: he did nothing. He left the bullet stay where it was for the rest of his life. It seems that both McKinley and Garfield had died from infection of their shooting wounds after doctors poked around trying to extract the bullet. It’s quite possible that Lincoln died the same way (Lincoln’s doctor was the one who killed Garfield by poking around this way).X-ray of Teddy Roosevelt showing the bullet where he let it lie.

X-ray of Teddy Roosevelt showing the bullet where he let it lie. The stripes look like lead paint, used to mark the spot. 

Roosevelt knew from hunting that a shot animal could last for years with the bullet still inside him. Roosevelt (and his doctors) knew, or suspected, that his bullet had stopped in a place where it would be harmless unless someone tried to extract it.

T. Roosevelt with Rhino, 1909.

T. Roosevelt with Rhino, 1909. Teddy would be shot 3 years later, in 1912.

In the speech, Roosevelt said, “it takes more than that to stop a Bull Moose.” He ought to know. For more T. Roosevelt pictures, click here.

Chernobyl radiation appears to cure cancer

In a recent post about nuclear power, I mentioned that the health risks of nuclear power are low compared to the main alternatives: coal and natural gas. Even with scrubbing, the fumes from coal burning power plants are deadly once the cumulative effect on health over 1000 square miles is considered. And natural gas plants and pipes have fairly common explosions.

With this post I’d like to discuss a statistical fluke (or observation), that even with the worst type of nuclear accident, the broad area increased cancer incidence is generally too small to measure. The worst nuclear disaster we are ever likely to encounter was the explosion at Chernobyl. It occurred 27 years ago during a test of the safety shutdown system and sent a massive plume of radioactive core into the atmosphere. If any accident should increase the cancer rate of those around it, this should. Still, by fluke or not, the rate of thyroid cancer is higher in the US than in Belarus, close to the Chernobyl plant in the prime path of the wind. Thyroid cancer is likely the most excited cancer, enhanced by radio-iodine, and Chernobyl had the largest radio-iodine release to date. Thus, it’s easy to wonder why the rates of Thyroid cancer seem to suggest that the radiation cures cancer rather than causes it.

Thyroid Cancer Rates for Belarus and US; the effect of Chernobyl is less-than clear.

Thyroid Cancer Rates for Belarus and US; the effect of Chernobyl is less-than clear.

The chart above raises more questions than it answers. Note that the rate of thyroid cancer has doubled over the past few years, both in the US and in Belarus. Also note that the rate of cancer is 2 1/2 times as high in Pennsylvania as in Arkansas. One thought is test bias: perhaps we are  better at spotting cancer in the US than in Belarus, and perhaps better at spotting it in Pennsylvania than elsewhere. Perhaps. Another thought is coal. Areas that use a lot of coal tend to become sicker; Europe keeps getting sicker from its non-nuclear energy sources, Perhaps Pennsylvania (a coal state) uses more coal that Belarus (maybe).

Fukushima was a much less damaging accident, and much more recent. So far there has been no observed difference in cancer rate. As the reference below says: “there is no statistical evidence of a difference in thyroid cancer caused by the disaster.” This is not to say that explosions are OK. My company, REB Research, makes are high pressure, low temperature hydrogen-extracting membranes used to reduce the likelihood of hydrogen explosions in nuclear reactors; so far all the explosions have been hydrogen explosions.

Sources: for Belarus: Cancer consequences of the Chernobyl accident: 20 years on. For the US: GEOGRAPHIC VARIATION IN U.S. THYROID CANCER INCIDENCE, AND A CLUSTER NEAR NUCLEAR REACTORS IN NEW JERSEY, NEW YORK, AND PENNSYLVANIA.

R. E. Buxbaum, April 19, 2013; Here are some further, updated thoughts: radiation hormesis (and other hormesis)

Nuclear Power: the elephant of clean energy

As someone who heads a hydrogen energy company, REB Research, I regularly have to tip toe about nuclear power, a rather large elephant among the clean energy options. While hydrogen energy looks better than battery energy in terms of cost and energy density, neither are really energy sources; they are ways to transport energy or store it. Among non-fossil sources (sources where you don’t pollute the air massively) there is solar and wind: basically non-reliable, low density, high cost and quite polluting when you include the damage done making the devices.

Compared to these, I’m happy to report that the methanol used to make hydrogen in our membrane reactors can come from trees (anti-polluting), even tree farming isn’t all that energy dense. And then there’s uranium: plentiful, cheap and incredibly energy dense. I try to ignore how energy dense uranium is, but the cartoon below shows how hard that is to do sometimes. Nuclear power is reliable too, and energy dense; a small plant will produce between 500 and 1000 MW of power; your home uses perhaps 2 kW. You need logarithmic graph paper just to compare nuclear power to most anything else (including hydrogen):

log_scale

A tiny amount of uranium-oxide, the size of a pencil will provide as much power as hundreds of train cars full of coal. After transportation, the coal sells for about $80/ton; the sells for about $25/lb: far cheaper than the train loads of coal (there are 100-110 tons of coal to a train-car load). What’s more, while essentially all of the coal in a train car ends up in the air after it’s burnt, the waste uranium generally does not go into the air we breathe. The coal fumes are toxic, containing carcinogens, carbon monoxide, mercury, vanadium and arsenic; they are often radioactive too. All this is avoided with nuclear power unless there is a bad accident, and bad accidents are far rarer with nuclear power than, for example, with natural gas. Since Germany started shutting nuclear plants and replacing them with coal, it appears they are making all of Europe sicker).

It is true that the cost to build a nuclear plant is higher than to build a coal or gas plant, but it does not have to be: it wasn’t that way in the early days of nuclear power, nor is this true of military reactors that power our (USA) submarines and major warships. Commercial nuclear reactors cost a lot largely because of the time-cost for neighborhood approval (and they don’t always get approval). Batteries used for battery power get no safety review generally though there were two battery explosions on the Dreamliner alone, and natural gas has been known to level towns. Nuclear reactors can blow up too, as Chernobyl showed (and to a lesser extent Fukushima), but almost any design is better than Chernobyl.

The biggest worry people have with nuclear, and the biggest objection it seems to me, is escaped radiation. In a future post, I plan to go into the reality of the risk in more detail, but the worry is far worse than the reality, or far worse than the reality of other dangers (we all die of something eventually). The predicted death rate from the three-mile island accident is basically nil; Fukushima has provided little health damage (not that it’s a big comfort). Further, bizarre as this seems the thyroid cancer rate in Belarus in the wind-path of the Chernobyl plant is actually slightly lower than in the US (7 per 100,000 in Belarus compared to over 9 per 100,000 in the USA). This is clearly a statistical fluke; it’s caused, I believe, by the tendency for Russians to die of other things before they can get thyroid cancer, but it suggests that the health risks of even the worst nuclear accidents are not as bad as you might think. (BTW, Our company makes hydrogen extractors that make accidents less likely)

The biggest real radiation worry (in my opinion) is where to put the waste. Ever since President Carter closed off the option of reprocessing used fuel for re-use there has been no way to permanently get rid of waste. Further, ever since President Obama closed the Yucca Mountain burial repository there have been no satisfactory place to put the radioactive waste. Having waste sitting around above ground all over the US is a really bad option because the stuff is quite toxic. Just as the energy content of nuclear fuel is higher than most fuels, the energy content of the waste is higher. Burying it deep below a mountain in an area were no-one is likely to live seems like a good solution: sort of like putting the uranium back where it came from. And reprocessing for re-use seems like an even better solution since this gets rid of the waste permanently.

I should mention that nuclear power-derived electricity is a wonderful way to generate electricity or hydrogen for clean transportation. Further, the heat of hot springs comes from nuclear power. The healing waters that people flock to for their health is laced with isotopes (and it’s still healthy). For now, though I’ll stay in the hydrogen generator business and will ignore the clean elephant in the room. Fortunately there’s hardly any elephant poop, only lots and lots of coal and solar poop.