Category Archives: math

Chaos, Stocks, and Global Warming

Two weeks ago, I discussed black-body radiation and showed how you calculate the rate of radiative heat transfer from any object. Based on this, I claimed that basal metabolism (the rate of calorie burning for people at rest) was really proportional to surface area, not weight as in most charts. I also claimed that it should be near-impossible to lose weight through exercise, and went on to explain why we cover the hot parts of our hydrogen purifiers and hydrogen generators in aluminum foil.

I’d previously discussed chaos and posted a chart of the earth’s temperature over the last 600,000 years. I’d now like to combine these discussions to give some personal (R. E. Buxbaum) thoughts on global warming.

Black-body radiation differs from normal heat transfer in that the rate is proportional to emissivity and is very sensitive to temperature. We can expect the rate of heat transfer from the sun to earth will follow these rules, and that the rate from the earth will behave similarly.

That the earth is getting warmer is seen as proof that the carbon dioxide we produce is considered proof that we are changing the earth’s emissivity so that we absorb more of the sun’s radiation while emitting less (relatively), but things are not so simple. Carbon dioxide should, indeed promote terrestrial heating, but a hotter earth should have more clouds and these clouds should reflect solar radiation, while allowing the earth’s heat to radiate into space. Also, this model would suggest slow, gradual heating beginning, perhaps in 1850, but the earth’s climate is chaotic with a fractal temperature rise that has been going on for the last 15,000 years (see figure).

Recent temperature variation as measured from the Greenland Ice. A previous post had the temperature variation over the past 600,000 years.

Recent temperature variation as measured from the Greenland Ice. Like the stock market, it shows aspects of chaos.

Over a larger time scale, the earth’s temperature looks, chaotic and cyclical (see the graph of global temperature in this post) with ice ages every 120,000 years, and chaotic, fractal variation at times spans of 100 -1000 years. The earth’s temperature is self-similar too; that is, its variation looks the same if one scales time and temperature. This is something that is seen whenever a system possess feedback and complexity. It’s seen also in the economy (below), a system with complexity and feedback.

Manufacturing Profit is typically chaotic -- something that makes it exciting.

Manufacturing Profit is typically chaotic — and seems to have cold spells very similar to the ice ages seen above.

The economy of any city is complex, and the world economy even more so. No one part changes independent of the others, and as a result we can expect to see chaotic, self-similar stock and commodity prices for the foreseeable future. As with global temperature, the economic data over a 10 year scale looks like economic data over a 100 year scale. Surprisingly,  the economic data looks similar to the earth temperature data over a 100 year or 1000 year scale. It takes a strange person to guess either consistently as both are chaotic and fractal.

gomez3

It takes a rather chaotic person to really enjoy stock trading (Seen here, Gomez Addams of the Addams Family TV show).

Clouds and ice play roles in the earth’s feedback mechanisms. Clouds tend to increase when more of the sun’s light heats the oceans, but the more clouds, the less heat gets through to the oceans. Thus clouds tend to stabilize our temperature. The effect of ice is to destabilize: the more heat that gets to the ice, the more melts and the less of the suns heat is reflected to space. There is time-delay too, caused by the melting flow of ice and ocean currents as driven by temperature differences among the ocean layers, and (it seems) by salinity. The net result, instability and chaos.

The sun has chaotic weather too. The rate of the solar reactions that heat the earth increases with temperature and density in the sun’s interior: when a volume of the sun gets hotter, the reaction rates pick up making the volume yet-hotter. The temperature keeps rising, and the heat radiated to the earth keeps increasing, until a density current develops in the sun. The hot area is then cooled by moving to the surface and the rate of solar output decreases. It is quite likely that some part of our global temperature rise derives from this chaotic variation in solar output. The ice caps of Mars are receding.

The change in martian ice could be from the sun, or it might be from Martian dust in the air. If so, it suggests yet another feedback system for the earth. When economic times age good we have more money to spend on agriculture and air pollution control. For all we know, the main feedback loops involve dust and smog in the air. Perhaps, the earth is getting warmer because we’ve got no reflective cloud of dust as in the dust-bowl days, and our cities are no longer covered by a layer of thick, black (reflective) smog. If so, we should be happy to have the extra warmth.

The Gift of Chaos

Many, if not most important engineering systems are chaotic to some extent, but as most college programs don’t deal with this behavior, or with this type of math, I thought I might write something on it. It was a big deal among my PhD colleagues some 30 years back as it revolutionized the way we looked at classic problems; it’s fundamental, but it’s now hardly mentioned.

Two of the first freshman engineering homework problems I had turn out to have been chaotic, though I didn’t know it at the time. One of these concerned the cooling of a cup of coffee. As presented, the coffee was in a cup at a uniform temperature of 70°C; the room was at 20°C, and some fanciful data was presented to suggest that the coffee cooled at a rate that was proportional the difference between the (changing) coffee temperature and the fixed room temperature. Based on these assumptions, we predicted exponential cooling with time, something that was (more or less) observed, but not quite in real life. The chaotic part in a real cup of coffee, is that the cup develops currents that move faster and slower. These currents accelerate heat loss, but since they are driven by the temperature differences within the cup they tend to speed up and slow down erratically. They accelerate when the cup is not well stirred, causing new stir, and slow down when it is stirred, and the temperature at any point is seen to rise and fall in an almost rhythmic fashion; that is, chaotically.

While it is impossible to predict what will happen over a short time scale, there are some general patterns. Perhaps the most remarkable of these is self-similarity: if observed over a short time scale (10 seconds or less), the behavior over 10 seconds will look like the behavior over 1 second, and this will look like the behavior over 0.1 second. The only difference being that, the smaller the time-scale, the smaller the up-down variation. You can see the same thing with stock movements, wind speed, cell-phone noise, etc. and the same self-similarity can occur in space so that the shape of clouds tends to be similar at all reasonably small length scales. The maximum average deviation is smaller over smaller time scales, of course, and larger over large time-scales, but not in any obvious way. There is no simple proportionality, but rather a fractional power dependence that results in these chaotic phenomena having fractal dependence on measure scale. Some of this is seen in the global temperature graph below.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Chaos can be stable or unstable, by the way; the cooling of a cup of coffee was stable because the temperature could not exceed 70°C or go below 20°C. Stable chaotic phenomena tend to have fixed period cycles in space or time. The world temperature seems to follow this pattern though there is no obvious reason it should. That is, there is no obvious maximum and minimum temperature for the earth, nor any obvious reason there should be cycles or that they should be 120,000 years long. I’ll probably write more about chaos in later posts, but I should mention that unstable chaos can be quite destructive, and quite hard to prevent. Some form of chaotic local heating seems to have caused battery fires aboard the Dreamliner; similarly, most riots, famines, and financial panics seem to be chaotic. Generally speaking, tight control does not prevent this sort of chaos, by the way; it just changes the period and makes the eruptions that much more violent. As two examples, consider what would happen if we tried to cap a volcano, or provided  clamp-downs on riots in Syria, Egypt or Ancient Rome.

From math, we know some alternate ways to prevent unstable chaos from getting out of hand; one is to lay off, another is to control chaotically (hard to believe, but true).

 

Statistics Joke

A classic statistics joke concerns a person who’s afraid to fly; he goes to a statistician who explains that planes are very, very safe, especially if you fly a respectable airline in good weather. In that case, virtually the only problem you’ll have is the possibility of a bomb on board. The fellow thinks it over and decides that flying is still too risky, so the statistician suggests he plant a bomb on the airplane, but rig it to not go off. The statistician explains: while it’s very rare to have a bomb onboard an airplane, it’s really unheard of to have two bombs on the same plane.

It’s funny because …. the statistician left out the fact that an independent variable (number of bombs) has to be truly independent. If it is independent, the likelihood is found using a poisson distribution, a non-normal distribution where the greatest likelihood is zero bombs, and there are no possibilities for a negative bomb. Poisson distributions are rarely taught in schools for some reason.

By Dr. Robert E. Buxbaum, Mar 25, 2013. If you’ve got a problem like this (particularly involving chemical engineering) you could come to my company, REB Research.

Heat conduction in insulating blankets, aerogels, space shuttle tiles, etc.

A lot about heat conduction in insulating blankets can be explained by the ordinary motion of gas molecules. That’s because the thermal conductivity of air (or any likely gas) is much lower than that of glass, alumina, or any likely solid material used for the structure of the blanket. At any temperature, the average kinetic energy of an air molecule is 1/2kT in any direction, or 3/2kT altogether; where k is Boltzman’s constant, and T is absolute temperature, °K. Since kinetic energy equals 1/2 mv2, you find that the average velocity in the x direction must be v = √kT/m = √RT/M. Here m is the mass of the gas molecule in kg, M is the molecular weight also in kg (0.029 kg/mol for air), R is the gas constant 8.29J/mol°C, and v is the molecular velocity in the x direction, in meters/sec. From this equation, you will find that v is quite large under normal circumstances, about 290 m/s (650 mph) for air molecules at ordinary temperatures of 22°C or 295 K. That is, air molecules travel in any fixed direction at roughly the speed of sound, Mach 1 (the average speed including all directions is about √3 as fast, or about 1130 mph).

The distance a molecule will go before hitting another one is a function of the cross-sectional areas of the molecules and their densities in space. Dividing the volume of a mol of gas, 0.0224 m3/mol at “normal conditions” by the number of molecules in the mol (6.02 x10^23) gives an effective volume per molecule at this normal condition: .0224 m3/6.0210^23 = 3.72 x10^-26 m3/molecule at normal temperatures and pressures. Dividing this volume by the molecular cross-section area for collisions (about 1.6 x 10^-19 m2 for air based on an effective diameter of 4.5 Angstroms) gives a free-motion distance of about 0.23×10^-6 m or 0.23µ for air molecules at standard conditions. This distance is small, to be sure, but it is 1000 times the molecular diameter, more or less, and as a result air behaves nearly as an “ideal gas”, one composed of point masses under normal conditions (and most conditions you run into). The distance the molecule travels to or from a given surface will be smaller, 1/√3 of this on average, or about 1.35×10^-7m. This distance will be important when we come to estimate heat transfer rates at the end of this post.

 

Molecular motion of an air molecule (oxygen or nitrogen) as part of heat transfer process; this shows how some of the dimensions work.

Molecular motion of an air molecule (oxygen or nitrogen) as part of heat transfer process; this shows how some of the dimensions work.

The number of molecules hitting per square meter per second is most easily calculated from the transfer of momentum. The pressure at the surface equals the rate of change of momentum of the molecules bouncing off. At atmospheric pressure 103,000 Pa = 103,000 Newtons/m2, the number of molecules bouncing off per second is half this pressure divided by the mass of each molecule times the velocity in the surface direction. The contact rate is thus found to be (1/2) x 103,000 Pa x 6.02^23 molecule/mol /(290 m/s. x .029 kg/mol) = 36,900 x 10^23 molecules/m2sec.

The thermal conductivity is merely this number times the heat capacity transfer per molecule times the distance of the transfer. I will now calculate the heat capacity per molecule from statistical mechanics because I’m used to doing things this way; other people might look up the heat capacity per mol and divide by 6.02 x10^23: For any gas, the heat capacity that derives from kinetic energy is k/2 per molecule in each direction, as mentioned above. Combining the three directions, that’s 3k/2. Air molecules look like dumbbells, though, so they have two rotations that contribute another k/2 of heat capacity each, and they have a vibration that contributes k. We begin with an approximate value for k = 2 cal/mol of molecules per °C; it’s actually 1.987 but I round up to include some electronic effects. Based on this, we calculate the heat capacity of air to be 7 cal/mol°C at constant volume or 1.16 x10^-23 cal/molecule°C. The amount of energy that can transfer to the hot (or cold) wall is this heat capacity times the temperature difference that molecules carry between the wall and their first collision with other gases. The temperature difference carried by air molecules at standard conditions is only 1.35 x10-7 times the temperature difference per meter because the molecules only go that far before colliding with another molecule (remember, I said this number would be important). The thermal conductivity for stagnant air per meter is thus calculated by multiplying the number of molecules times that hit per m2 per second, the distance the molecule travels in meters, and the effective heat capacity per molecule. This would be 36,900 x 10^23  molecules/m2sec x 1.35 x10-7m x 1.16 x10^-23 cal/molecule°C = 0.00578 cal/ms°C or .0241 W/m°C. This value is (pretty exactly) the thermal conductivity of dry air that you find by experiment.

I did all that math, though I already knew the thermal conductivity of air from experiment for a few reasons: to show off the sort of stuff you can do with simple statistical mechanics; to build up skills in case I ever need to know the thermal conductivity of deuterium or iodine gas, or mixtures; and finally, to be able to understand the effects of pressure, temperature and (mainly insulator) geometry — something I might need to design a piece of equipment with, for example, lower thermal heat losses. I find, from my calculation that we should not expect much change in thermal conductivity with gas pressure at near normal conditions; to first order, changes in pressure will change the distance the molecule travels to exactly the same extent that it changes the number of molecules that hit the surface per second. At very low pressures or very small distances, lower pressures will translate to lower conductivity, but for normal-ish pressures and geometries, changes in gas pressure should not affect thermal conductivity — and does not.

I’d predict that temperature would have a larger effect on thermal conductivity, but still not an order-of magnitude large effect. Increasing the temperature increases the distance between collisions in proportion to the absolute temperature, but decreases the number of collisions by the square-root of T since the molecules move faster at high temperature. As a result, increasing T has a √T positive effect on thermal conductivity.

Because neither temperature nor pressure has much effect, you might expect that the thermal conductivity of all air-filed insulating blankets at all normal-ish conditions is more-or-less that of standing air (air without circulation). That is what you find, for the most part; the same 0.024 W/m°C thermal conductivity with standing air, with high-tech, NASA fiber blankets on the space shuttle and with the cheapest styrofoam cups. Wool felt has a thermal conductivity of 0.042 W/m°C, about twice that of air, a not-surprising result given that wool felt is about 1/2 wool and 1/2 air.

Now we can start to understand the most recent class of insulating blankets, those with very fine fibers, or thin layers of fiber (or aluminum or gold). When these are separated by less than 0.2µ you finally decrease the thermal conductivity at room temperature below that for air. These layers decrease the distance traveled between gas collisions, but still leave the same number of collisions with the hot or cold wall; as a result, the smaller the gap below .2µ the lower the thermal conductivity. This happens in aerogels and some space blankets that have very small silica fibers, less than .1µ apart (<100 nm). Aerogels can have much lower thermal conductivities than 0.024 W/m°C, even when filled with air at standard conditions.

In outer space you get lower thermal conductivity without high-tech aerogels because the free path is very long. At these pressures virtually every molecule hits a fiber before it hits another molecule; for even a rough blanket with distant fibers, the fibers bleak up the path of the molecules significantly. Thus, the fibers of the space shuttle (about 10 µ apart) provide far lower thermal conductivity in outer space than on earth. You can get the same benefit in the lab if you put a high vacuum of say 10^-7 atm between glass walls that are 9 mm apart. Without the walls, the air molecules could travel 1.3 µ/10^-7 = 13m before colliding with each other. Since the walls of a typical Dewar are about 0.009 m apart (9 mm) the heat conduction of the Dewar is thus 1/150 (0.7%) as high as for a normal air layer 9mm thick; there is no thermal conductivity of Dewar flasks and vacuum bottles as such, since the amount of heat conducted is independent of gap-distance. Pretty spiffy. I use this knowledge to help with the thermal insulation of some of our hydrogen generators and hydrogen purifiers.

There is another effect that I should mention: black body heat transfer. In many cases black body radiation dominates: it is the reason the tiles are white (or black) and not clear; it is the reason Dewar flasks are mirrored (a mirrored surface provides less black body heat transfer). This post is already too long to do black body radiation justice here, but treat it in more detail in another post.

RE. Buxbaum

For parents of a young scientist: math

It is not uncommon for parents to ask my advice or help with their child; someone they consider to be a young scientist, or at least a potential young scientist. My main advice is math.

Most often the tyke is 5 to 8 years old and has an interest in weather, chemistry, or how things work. That’s a good age, about the age that the science bug struck me, and it’s a good age to begin to introduce the power of math. Math isn’t the total answer, by the way; if your child is interested in weather, for example, you’ll need to get books on weather, and you’ll want to buy a weather-science kit at your local smart-toy store (look for one with a small wet-bulb and dry bulb thermometer setup so that you’ll be able to discuss humidity  in some modest way: wet bulb temperatures are lower than dry bulb with a difference that is higher the lower the humidity; it’s zero at 100%). But math makes the key difference between the interest blooming into science or having it wilt or worse. Math is the language of science, and without it there is no way that your child will understand the better books, no way that he or she will be able to talk to others who are interested, and the interest can bloom into a phobia (that’s what happens when your child has something to express, but can’t speak about it in any real way).

Math takes science out of the range of religion and mythology, too. If you’re stuck to the use of words, you think that the explanations in science books resemble the stories of the Greek gods. You either accept them or you don’t. With math you see that they are testable, and that the  versions in the book are generally simplified approximations to some more complex description. You also get to see that there the descriptions are testable, and that are many, different looking descriptions that will fit the same phenomena. Some will be mathematically identical, and others will be quite different, but all are testable as the Greek myths are not.

What math to teach depends on your child’s level and interests. If the child is young, have him or her count in twos or fives, or tens, etc. Have him or her learn to spot patterns, like that the every other number that is divisible by 5 ends in zero, or that the sum of digits for every number that’s divisible by three is itself divisible by three. If the child is a little older, show him or her geometry, or prime numbers, or squares and cubes. Ask your child to figure out the sum of all the numbers from 1 to 100, or to estimate the square-root of some numbers. Ask why the area of a circle is πr2 while the circumference is 2πr: why do both contain the same, odd factor, π = 3.1415926535… All these games and ideas will give your child a language to use discussing science.

If your child is old enough to read, I’d definitely suggest you buy a few books with nice pictures and practical examples. I’d grown up with the Giant Golden book of Mathematics by Irving Adler, but I’ve seen and been impressed with several other nice books, and with the entire Golden Book series. Make regular trips to the library, and point your child to an appropriate section, but don’t force the child to take science books. Forcing your child will kill any natural interest he or she has. Besides, having other interests is a sign of normality; even the biggest scientist will sometimes want to read something else (sports, music, art, etc.) Many scientists drew (da Vinci, Feynman) or played the violin (Einstein). Let your child grow at his or her own pace and direction. (I liked the theater, including opera, and liked philosophy).

Now, back to the science kits and toys. Get a few basic ones, and let your child play: these are toys, not work. I liked chemistry, and a chemistry set was perhaps the best toy I ever got. Another set I liked was an Erector set (Gilbert). Get good sets that they pick out, but don’t be disappointed if they don’t do all the experiments, or any of them. They may not be interested in this group; just move on. I was not interested in microscopy, fish, or animals, for example. And don’t be bothered if interests change. It’s common to start out interested in dinosaurs and then to change to an interest in other things. Don’t push an old interest, or even an active new interest: enough parental pushing will kill any interest, and that’s sad. As Solomon the wise said, the fire is more often extinguished by too much fuel than by too little. But you do need to help with math, though; without that, no real progress will be possible.

Oh, one more thing, don’t be disappointed if your child isn’t interested in science; most kids aren’t interested in science as such, but rather in something science-like, like the internet, or economics, or games, or how things work. These areas are all great too, and there is a lot more room for your child to find a good job or a scholarship based on their expertise in theses areas. Any math he or she learns is certain to help with all of these pursuits, and with whatever other science-like direction he or she takes.   — Good luck. Robert Buxbaum (Economics isn’t science, not because of the lack of math, but because it’s not reproducible: you can’t re-run the great depression without FDR’s stimulus, or without WWII)