Category Archives: Membrane Reactors

Devices that let you go beyond the normal thermodynamic limits of reaction extent by letting you get outside of the constraints of Le Chatalier’s principal.

My latest invention: improved fuel cell reformer

Last week, I submitted a provisional patent application for an improved fuel reformer system to allow a fuel cell to operate on ordinary, liquid fuels, e.g. alcohol, gasoline, and JP-8 (diesel). I’m attaching the complete text of the description, below, but since it is not particularly user-friendly, I’d like to add a small, explanatory preface. What I’m proposing is shown in the diagram, following. I send a hydrogen-rich stream plus ordinary fuel and steam to the fuel cell, perhaps with a pre-reformer. My expectation that the fuel cell will not completely convert this material to CO2 and water vapor, even with the pre-reformer. Following the fuel cell, I then use a water-gas shift reactor to convert product CO and H2O to H2 and CO2 to increase the hydrogen content of the stream. I then use a semi-permeable membrane to extract the waste CO2 and water. I recirculate the hydrogen and the rest of the water back to the fuel cell to generate extra power, prevent coking, and promote steam reforming. I calculate the design should be able to operate at, perhaps 0.9 Volt per cell, and should nearly double the energy per gallon of fuel compared to ordinary diesel. Though use of pure hydrogen fuel would give better mileage, this design seems better for some applications. Please find the text following.

Use of a Water-Gas shift reactor and a CO2 extraction membrane to improve fuel utilization in a solid oxide fuel cell system.

Inventor: Dr. Robert E. Buxbaum, REB Research, 12851 Capital St, Oak Park, MI 48237; Patent Pending.

Solid oxide fuel cells (SOFCs) have improved over the last 10 years to the point that they are attractive options for electric power generation in automobiles, airplanes, and auxiliary power supplies. These cells operate at high temperatures and tolerate high concentrations of CO, hydrocarbons and limited concentrations of sulfur (H2S). SOFCs can operate on reformate gas and can perform limited degrees of hydrocarbon reforming too – something that is advantageous from the stand-point of fuel logistics: it’s far easier to transport a small volume of liquid fuel that it is a large volume of H2 gas. The main problem with in-situ reforming is the danger of coking the fuel cell, a problem that gets worse when reforming is attempted with the more–desirable, heavier fuels like gasoline and JP-8. To avoid coking the fuel cell, heavier fuels are typically reforming before hand in a separate reactor, typically by partial oxidation at auto-thermal conditions, a process that typically adds nitrogen and results in the inability to use the natural heat given off by the fuel cell. Steam reforming has been suggested as an option (Chick, 2011) but there is not enough heat released by the fuel cell alone to do it with the normal fuel cycles.

Another source of inefficiency in reformate-powered SOFC systems is basic to the use of carbon-containing fuels: the carbon tends to leave the fuel cell as CO instead of CO2. CO in the exhaust is undesirable from two perspectives: CO is toxic, and quite a bit of energy is wasted when the carbon leaves in this form. Normally, carbon can not leave as CO2 though, since CO is the more stable form at the high temperatures typical of SOFC operation. This patent provides solutions to all these problems through the use of a water-gas shift reactor and a CO2-extraction membrane. Find a drawing of a version of the process following.

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

As depicted in Figure 1, above, the fuel enters, is mixed with steam or partially boiled water, and heated in the rectifying heat exchanger. The hot steam + fuel mix then enters a steam reformer and perhaps a sulfur removal stage. This would be typical steam reforming except for a key difference: the heat for reforming comes (at least in part) from waste heat of the SOFC. Normally speaking there would not be enough heat, but in this system we add a recycle stream of H2-rich gas to the fuel cell. This stream, produced from waste CO in a water-gas shift reactor (the WGS) shown in Figure 1. This additional H2 adds to the heat generated by the SOFC and also adds to the amount of water in the SOFC. The net effect should be to reduce coking in the fuel cell while increasing the output voltage and providing enough heat for steam reforming. At least, that is the thought.

SOFCs differ from proton conducting FCS, e.g. PEM FCs, in that the ion that moves is oxygen, not hydrogen. As a result, water produced in the fuel cell ends up in the hydrogen-rich stream and not in the oxygen stream. Having this additional water in the fuel stream of the SOFC can promote fuel reforming within the FC. This presents a difficulty in exhausting the waste water vapor in that a means must be found to separate it from un-combusted fuel. This is unlike the case with PEM FCs, where the waste water leaves with the exhaust air. Our main solution to exhausting the water is the use of a membrane and perhaps a knockout drum to extract it from un-combusted fuel gases.

Our solution to the problem of carbon leaving the SOFC as CO is to react this CO with waste H2O to convert it to CO2 and additional H2. This is done in a water gas shift reactor, the WGS above. We then extract the CO2 and remaining, unused water through a CO2- specific membrane and we recycle the H2 and unconverted CO back to the SOFC using a low temperature recycle blower. The design above was modified from one in a paper by PNNL; that paper had neither a WGS reactor nor a membrane. As a result it got much worse fuel conversion, and required a high temperature recycle blower.

Heat must be removed from the SOFC output to cool it to a temperature suitable for the WGS reactor. In the design shown, the heat is used to heat the fuel before feeding it to the SOFC – this is done in the Rectifying HX. More heat must be removed before the gas can go to the CO2 extractor membrane; this heat is used to boil water for the steam reforming reaction. Additional heat inputs and exhausts will be needed for startup and load tracking. A solution to temporary heat imbalances is to adjust the voltage at the SOFC. The lower the voltage the more heat will be available to radiate to the steam reformer. At steady state operation, a heat balance suggests we will be able to provide sufficient heat to the steam reformer if we produce electricity at between 0.9 and 1.0 Volts per cell. The WGS reactor allows us to convert virtually all the fuel to water and CO2, with hardly any CO output. This was not possible for any design in the PNNL study cited above.

The drawing above shows water recycle. This is not a necessary part of the cycle. What is necessary is some degree of cooling of the WGS output. Boiling recycle water is shown because it can be a logistic benefit in certain situations, e.g. where you can not remove the necessary CO2 without removing too much of the water in the membrane module, and in mobile military situations, where it’s a benefit to reduce the amount of material that must be carried. If water or fuel must be boiled, it is worthwhile to do so by cooling the output from the WGS reactor. Using this heat saves energy and helps protect the high-selectivity membranes. Cooling also extends the life of the recycle blower and allows the lower-temperature recycle blowers. Ideally the temperature is not lowered so much that water begins to condense. Condensed water tends to disturb gas flow through a membrane module. The gas temperatures necessary to keep water from condensing in the module is about 180°C given typical, expected operating pressures of about 10 atm. The alternative is the use of a water knockout and a pressure reducer to prevent water condensation in membranes operated at lower temperatures, about 50°C.

Extracting the water in a knockout drum separate from the CO2 extraction has the secondary advantage of making it easier to adjust the water content in the fuel-gas stream. The temperature of condensation can then be used to control the water content; alternately, a separate membrane can extract water ahead of the CO2, with water content controlled by adjusting the pressure of the liquid water in the exit stream.

Some description of the membrane is worthwhile at this point since a key aspect of this patent – perhaps the key aspect — is the use of a CO2-extraction membrane. It is this addition to the fuel cycle that allows us to use the WGS reactor effectively to reduce coking and increase efficiency. The first reasonably effective CO2 extraction membranes appeared only about 5 years ago. These are made of silicone polymers like dimethylsiloxane, e.g. the Polaris membrane from MTR Inc. We can hope that better membranes will be developed in the following years, but the Polaris membrane is a reasonably acceptable option and available today, its only major shortcoming being its low operating temperature, about 50°C. Current Polaris membranes show H2-CO2 selectivity about 30 and a CO2 permeance about 1000 Barrers; these permeances suggest that high operating pressures would be desirable, and the preferred operation pressure could be 300 psi (20 atm) or higher. To operate the membrane with a humid gas stream at high pressure and 50°C will require the removal of most of the water upstream of the membrane module. For this, I’ve included a water knockout, or steam trap, shown in Figure 1. I also include a pressure reduction valve before the membrane (shown as an X in Figure 1). The pressure reduction helps prevent water condensation in the membrane modules. Better membranes may be able to operate at higher temperatures where this type of water knockout is not needed.

It seems likely that, no matter what improvements in membrane technology, the membrane will have to operate at pressures above about 6 atm, and likely above about 10 atm (upstream pressure) exhausting CO2 and water vapor to atmosphere. These high pressures are needed because the CO2 partial pressure in the fuel gas leaving the membrane module will have to be significantly higher than the CO2 exhaust pressure. Assuming a CO2 exhaust pressure of 0.7 atm or above and a desired 15% CO2 mol fraction in the fuel gas recycle, we can expect to need a minimum operating pressure of 4.7 atm at the membrane. Higher pressures, like 10 or 20 atm could be even more attractive.

In order to reform a carbon-based fuel, I expect the fuel cell to have to operate at 800°C or higher (Chick, 2011). Most fuels require high temperatures like this for reforming –methanol being a notable exception requiring only modest temperatures. If methanol is the fuel we will still want a rectifying heat exchanger, but it will be possible to put it after the Water-Gas Shift reactor, and it may be desirable for the reformer of this fuel to follow the fuel cell. When reforming sulfur-containing fuels, it is likely that a sulfur removal reactor will be needed. Several designs are available for this; I provide references to two below.

The overall system design I suggest should produce significantly more power per gm of carbon-based feed than the PNNL system (Chick, 2011). The combination of a rectifying heat exchange, a water gas reactor and CO2 extraction membrane recovers chemical energy that would otherwise be lost with the CO and H2 bleed steam. Further, the cooling stage allows the use of a lower temperature recycle pump with a fairly low compression ratio, likely 2 or less. The net result is to lower the pump cost and power drain. The fuel stream, shown in orange, is reheated without the use of a combustion pre-heater, another big advantage. While PNNL (Chick, 2011) has suggested an alternative route to recover most of the chemical energy through the use of a turbine power generator following the fuel cell, this design should have several advantages including greater reliability, and less noise.

Claims:

1.   A power-producing, fuel cell system including a solid oxide fuel cell (SOFC) where a fuel-containing output stream from the fuel cell goes to a regenerative heat exchanger followed by a water gas shift reactor followed by a membrane means to extract waste gases including carbon dioxide (CO2) formed in said reactor. Said reactor operating a temperatures between 200 and 450°C and the extracted carbon dioxide leaving at near ambient pressure; the non-extracted gases being recycled to the fuel cell.

Main References:

The most relevant reference here is “Solid Oxide Fuel Cell and Power System Development at PNNL” by Larry Chick, Pacific Northwest National Laboratory March 29, 2011: http://www.energy.gov/sites/prod/files/2014/03/f10/apu2011_9_chick.pdf. Also see US patent  8394544. it’s from the same authors and somewhat similar, though not as good and only for methane, a high-hydrogen fuel.

Robert E. Buxbaum, REB Research, May 11, 2015.

Hydrogen cars and buses are better than Tesla

Hydrogen fueled cars and buses are as clean to drive as battery vehicles and have better range and faster fueling times. Cost-wise, a hydrogen fuel tank is far cheaper and lighter than an equivalent battery and lasts far longer. Hydrogen is likely safer because the tanks do not carry their oxidant in them. And the price of hydrogen is relatively low, about that of gasoline on a per-mile basis: far lower than batteries when the cost of battery wear-out is included. Both Presidents Clinton and Bush preferred hydrogen over batteries, but the current administration favors batteries. Perhaps history will show them correct, but I think otherwise. Currently, there is not a hydrogen bus, car, or boat making runs at Disney’s Experimental Community of Tomorrow (EPCOT), nor is there an electric bus car or boat. I suspect it’s a mistake, at least convening the lack of a hydrogen vehicle. 

The best hydrogen vehicles on the road have more range than the best electric vehicle, and fuel faster. The hydrogen powered, Honda Clarity debuted in 2008. It has a 270 mile range and takes 3-5 minutes to fuel with hydrogen at 350 atm, 5150 psi. By contrast, the Tesla S-sedan that debuted in 2012 claims only a 208 mile range for its standard, 60kWh configuration (the EPA claims: 190 miles) and requires three hours to charge using their fastest charger, 20 kW.

What limits the range of battery vehicles is that the stacks are very heavy and expensive. Despite using modern lithium-ion technology, Tesla’s 60 kWh battery weighs 1050 lbs including internal cooling, and adds another 250 lbs to the car for extra structural support. The Clarity fuel system weighs a lot less. The hydrogen cylinders weigh 150 lb and require a fuel cell stack (30 lb) and a smaller lithium-ion battery for start-up (90 lb). The net effect is that the Clarity weighs 3582 lbs vs 4647 lbs for the Tesla S. This extra weight of the Tesla seems to hurt its mileage by about 10%. The Tesla gets about 3.3 mi/kWh or 0.19 mile/lb of battery versus 60 miles/kg of hydrogen for the Clarity suggesting  3.6 mi/kWh at typical efficiencies. 

High pressure hydrogen tanks are smaller than batteries and cheaper per unit range. The higher the pressure the smaller the tank. The current Clarity fuels with 350 atm, 5,150 psi hydrogen, and the next generation (shown below) will use higher pressure to save space. But even with 335 atm hydrogen (5000 psi) a Clarity could fuel a 270 mile range with four, 8″ diameter tanks (ID), 4′ long. I don’t know how Honda makes its hydrogen tanks, but suitable tanks might be made from 0.065″ Maranging (aged) stainless steel (UTS = 350,000 psi, density 8 g/cc), surrounded by 0.1″ of aramid fiber (UTS = 250,000 psi, density = 1.6 g/cc). With this construction, each tank would weigh 14.0 kg (30.5 lbs) empty, and hold 11,400 standard liters, 1.14 kg (2.5 lb) of hydrogen at pressure. These tanks could cost $1500 total; the 270 mile range is 40% more Than the Tesla S at about 1/10 the cost of current Tesla S batteries The current price of a replacement Tesla battery pack is $12,000, subsidized by DoE; without the subsidy, the likely price would be $40,000.

Next generation Honda fuel cell vehicle prototype at the 2014 Detroit Auto Show.

Next generation Honda fuel cell vehicle prototype at the 2014 Detroit Auto Show.

Currently hydrogen is more expensive than electricity per energy value, but my company has technology to make it cheaply and more cleanly than electricity. My company, REB Research makes hydrogen generators that produce ultra pure hydrogen by steam reforming wow alcohol in a membrane reactor. A standard generator, suitable to a small fueling station outputs 9.5 kg of hydrogen per day, consuming 69 gal of methanol-water. At 80¢/gal for methanol-water, and 12¢/kWh for electricity, the output hydrogen costs $2.50/kg. A car owner who drove 120,000 miles would spend $5,000 on hydrogen fuel. For that distance, a Tesla owner would spend only $4400 on electricity, but would have to spend another $12,000 to replace the battery. Tesla batteries have a 120,000 mile life, and the range decreases with age. 

For a bus or truck at EPCOT, the advantages of hydrogen grow fast. A typical bus is expected to travel much further than 120,000 miles, and is expected to operate for 18 hour shifts in stop-go operation getting perhaps 1/4 the miles/kWh of a sedan. The charge time and range advantages of hydrogen build up fast. it’s common to build a hydrogen bus with five 20 foot x 8″ tanks. Fueled at 5000 psi., such buses will have a range of 420 miles between fill-ups, and a total tank weight and cost of about 600 lbs and $4000 respectively. By comparison, the range for an electric bus is unlikely to exceed 300 miles, and even this will require a 6000 lb., 360 kWh lithium-ion battery that takes 4.5 hours to charge assuming an 80 kW charger (200 Amps at 400 V for example). That’s excessive compared to 10-20 minutes for fueling with hydrogen.

While my hydrogen generators are not cheap: for the one above, about $500,000 including the cost of a compressor, the cost of an 80 kW DC is similar if you include the cost to run a 200 Amp, 400 V power line. Tesla has shown there are a lot of people who value clean, futuristic transport if that comes with comfort and style. A hydrogen car can meet that handily, and can provide the extra comforts of longer range and faster refueling.

Robert E. Buxbaum, February 12, 2014 (Lincoln’s birthday). Here’s an essay on Lincoln’s Gettysburg address, on the safety of batteries, and on battery cost vs hydrogen. My company, REB Research makes hydrogen generators and purifiers; we also consult.

Simple electroplating of noble metals

Electro-coating gold onto a Pd tube by dissolving an iron wire.

Electro-coating gold onto at Pd-coated tube by dissolving an iron wire at REB Research.

Here’s a simple trick for electroplating noble metals: gold, silver, copper, platinum. I learned this trick at Brooklyn Technical High School some years ago, and I still use it at REB Research as part of our process to make hydrogen permeation barriers, and sulfur tolerant permeation membranes.  It’s best used to coat reasonably inactive, small objects,  e.g. to coat copper on a nickel or silver on a penny for a science fair.

As a first step, you make a dilute acidic solution of the desired noble metal. Dissolve a gram or so of copper sulphate, silver nitrate, or gold chloride per 250 ml of water. Make sure the solution is acidic using pH paper, add acid if needed aiming for a pH of 3 to 4. Place some solution into a test tube or beaker of a size that will hold the object you want to coat. As a next step, attach an iron or steel wire to the object, I typically use bailing wire from the hardware store wrapped several times about the top of the object, and run the length of the object; see figure. Place the object into your solution and wait for 5 to 30 minutes. Coating works without the need for any other electric source or any current control.

The iron wire creates the electricity used in electroplating the noble metal. Iron has a higher electro-motive potential than hydrogen and hydrogen has a higher potential than the noble metals. In acid solution, the iron wire dissolves but (it’s hoped) the substrate does not. Each iron atom gives up two electrons, becoming Fe++. Some of these electrons go on to reduce hydrogen ions making H2 (2H+ 2e –> H2), but most should go to reduce the noble metal ions in the solution to form a coat of metallic gold, silver, or copper on both the wire and the object. See an example of how I do calculations regarding voltage, electron number, and Gibbs free energy.

Transferring electrons requires you have good electrical contact between the wire and the object. Most of the noble metal coats the object, not the wire since the object is bigger, typically. Thanks to my teachers at Brooklyn Technical High School for teaching me. For a uniform coat, it helps to run the wire down parallel to the entire length of tube; I think this is a capacitance, field effect. For a larger object, you may want several wires if you are plating a larger object. For a thicker coat, I found you are best off making many thin coats and heating them. This reduces tension forces in the coat, I think.

The picture shows a step in the process we use making our sulfur-resistant hydrogen permeation membranes (buy them here), used, e.g. to concentrate impurities in a hydrogen stream for improved gas chromatography. The next step is to dissolve the gold or copper into the palladium.

Go here for a great periodic table cup from REB Research, or for the rest of our REB Research products. I occasionally make silver-coated pennies for schoolchildren, but otherwise use this technology only for in-house production.

R.E. Buxbaum, July 20, 2013.

Link

Some 2-3 years ago I did an interview where I stood inside one of our hydrogen generator shacks (with the generator running) and poked a balloon filled with hydrogen with a lit cigar — twice. No fire, no explosion, either time. It’s not a super hit, but it’s gotten over 5000 views so far. Here it is

New hydrogen generator from REB Research

Here’s the new, latest version of our Me150 hydrogen generator with our wonder-secretary, Libby, shown for scale. It’s smaller and prettier than the previous version shown at left (previous version of Me150, not of secretary). Hydrogen output is 99.9999% pure, 9.5 kg/day, 75 slpm, 150 scfh H2; it generates hydrogen from methanol reforming in a membrane reactor. Pricing is $150,000. Uses about 7 gal of methanol-water ($6 worth) per kg of H2 (380 ft3). Can be used to fill weather balloons, cool electric dynamos, or provide hydrogen fuel for 2-10 fuel cell cars.

New REB Research hydrogen generator 150 scfh of 99.9999% H2 from methanol reforming

New REB Research hydrogen generator 150 scfh of 99.9999% pure H2 from methanol-water reforming against metal membranes.

Dr. Robert E. Buxbaum

Small hydrogen generators for cooling dynamo generators

A majority of the electricity used in the US comes from rotating dynamos. Power is provided to the dynamos by a turbine or IC engine and the dynamo turns this power into electricity by moving a rotating coil (a rotor) through a non-rotating magnetic field provided by magnets or a non-rotating coil (a stator). While it is easy to cool the magnets or stator, cooling the rotor is challenging as there is no possibility to connect it cooling water or heat transfer paste. One of the more common options is hydrogen gas.

It is common to fill the space between the rotor and the stator with hydrogen gas. Heat transfers from the rotor to the stator or to the walls of the dynamo through the circulating hydrogen. Hydrogen has the lowest density of any gas, and the highest thermal conductivity of any gas. The low density is important because it reduces the power drag (wind drag) on the rotor. The high heat transfer coefficient helps cool the rotor so that it does not burn out at high power draw.

Hydrogen is typically provided to the dynamo by a small hydrogen generator or hydrogen bottle. While we have never sold a hydrogen generator to this market, I strongly believe that our membrane reactor hydrogen generators would be competitive; the cost of hydrogen is lower than that of bottled gas; it is far more convenient and safe; and the hydrogen is purer than from electrolysis.

Hydrogen Cylinders versus Hydrogen Generators for Gas Chromatography

Hydrogen is an excellent cover gas for furnace brazing and electronic manufacture; it’s used as a carrier gas for gas chromatography or as a flame-detector gas, and it’s a necessity for ammonia production and most fuel cells. If you are working in one of these fields you can buy bottled hydrogen (cylinders) or a hydrogen generator . The main difference is cost. Cylinder hydrogen is typically the choice for small demand applications. A palladium membrane hydrogen purifier is added ( we make these) if high purity is important. Hydrogen generators are more generally used for larger -demand applications. They are more expensive at the start, but provide convenience and long-term savings. The essay below goes through the benefits and drawbacks of each as applies to gas chromatography.

Point of use Cylinder Hydrogen Is Simple and Allows Easy Monitoring and Control. At the smallest laboratories, those with one or two gas chromatographs, you’ll generally find you are best served by a single hydrogen cylinder for each GC, aided by a hydrogen purifier of some sort. This is called “point of use” hydrogen. Each cylinder is typically belted to a wall and used until the cylinder is empty. At that point, the application is stopped (the purifier is often stopped too) and a new cylinder switched in. There is usually a short break- in period where GC results are unreliable, but after one or two runs, everything is as before. The biggest advantage here is simplicity including ease of pressure control and monitoring. You can always check the pressure right by the GC and adjust it as needed. Long term cost is usually higher, though, and you have to stop whenever a cylinder needs switching.

Multi-cylinder Systems or Generators Provide Fewer interruptions. Larger laboratories tend to use multiple hydrogen cylinders with complex switchover systems, or hydrogen generators. Multiple cylinders are racked together and connected to a manifold and a single, larger purifier (we make these too). Tanks are emptied in series so that there is no disruption. When each tank empties, it is switched out in a way that maintains the flow. One problem is that the pressure and flow does not typically stay constant as the cylinders switch and as additional GCs or other processes are brought on line or taken off.

Purity can suffer too, as there is more tubing and more connections in the system. There is thus more room for leaks and degassing. This can be solved by replacing the single large purifier by point-of-use purifiers, installed just prior to the GC or other application.

Cylinder packs come with a safety disadvantage: with so many cylinders, there is a potential for disastrous leaks or mistakes that empty many cylinders at once — too fast to disperse the large amount of hydrogen released. Maintenance becomes an issue too since the manifolds and automatic switches become complicated quickly. Complex systems can require a trained technician to trouble-shoot and maintain; I sometimes do that, and customers don’t seem to mind, but it’s an issue.

Hydrogen generators can be cheaper and you avoid cylinder changes; Hydrogen generators are fed by tap-water or a very large tank of methanol -water. Running out is less of a problem, and adding more water or methanol to the tank does not affect the hydrogen output.

Safety is improved by limiting the output of the generator to the amount the room will vent. A room with 100 ft3 of air and some circulation can generally host a hydrogen generator 2-3 slpm output with no fear of reaching explosive limits. It’s also worthwhile to fit the hydrogen generator with an alarm or safety that shuts down if a leak is detected (we provide these for purifiers too).

Generator Options: Methanol-based hydrogen generators or electrolysis. Both options are are available in outputs from 250 ccm to 50 slpm. For larger-yet output, you’ll probably want an electrolyzer. In general, either generator will pay for itself in the first year if you use the gas, continuously, or nearly so.

In Electrolytic Hydrogen generators Purified water, either purchased separately, or purified on-site is mixed with an electrolyte, generally KOH, and converted to hydrogen and oxygen by the electrolytic reaction H2O –> H2 + ½ O2.  As the hydrogen produced is generally “wet”, containing water vapor, the hydrogen is then purified by use of a desiccant, or by passage through a metal membrane purifier. Desiccants are cheaper, but the gas is at best 99.9% pure, good enough to feed FIDs, but not good enough to be used as a carrier gas, or for chemical production. Over time desiccants wear out; they require constant monitoring and changing as they become filled with water vapor. Often electrolytic hydrogen generators also require the addition of a caustic electrolyte solution as caustic can leak out, or leave by corrosion mechanisms.

In Reformer-based hydrogen generators a methanol-water mix is pumped to about 300 psi and heated to about 350 °C. It is then sent over a catalyst where it is converted to a hydrogen-containing gas-mix by the reaction CH3OH + H2O –> 3H2 + CO2. Pure hydrogen is extracted from the gas mix by passing it through a membrane, either within the reactor (a membrane reactor), or by use of a membrane purifier external to the reactor.

Cost comparisons. Hydrogen in cylinders is fairly expensive if you use gas continuously. In Detroit, where we are, hydrogen costs about $70 each cylinder low low-purity gas, or $200 for high purity gas. Each cylinder contains 135 scf of gas. If you use 1/10 cylinder per day, you will find you’re spending about $7,300 per year on hydrogen gas, with another $1000 spent on cylinder rental and delivery. This is about the cost of a comparable hydrogen generator plus the water or methanol and electricity run it. If you use significantly less hydrogen you save money with cylinders, if you use more there is significant savings with a generator.

Most hydrogen generators have delivery pressure limitations compared to cylinders. Cylinders have no problem supplying hydrogen at 200 psi or greater pressures. By contrast, generators are limited to only the 60-150 psig range only. This pressure limitation is not likely to be a problem, even for GCs that need higher pressure gas or when the generator must be located far from the  instruments, but you have to be aware of the issue when buying the generator. Electrolysis systems that use caustic provide the highest pressures, but they tend to be the most expensive, and least safe as the operate hot and caustic can drip out. Fuel cell generators and reformers provide lower pressure gas (90 psi maximum, typically), but they are safer. In general generators should be located close to the instruments to minimize supply line pressure drop. If necessary it can pay to use cylinders and generators or several generators to provide a range of delivery pressures and a shorter distance between the hydrogen generator and the application.

Click here for the prices of REB Research hydrogen generators. By comparison, I’ve attached prices for electrolysis-based hydrogen generators here (it’s 2007 data; please check the company yourself for current prices). Finally, the price of membrane purifiers is listed here.

Maintenance required for optimal performance. Often electrolytic hydrogen generators require the addition of a caustic electrolyte solution; desiccant purified gas will require the monitoring and changing of desiccant cartridges to remove residual moisture from the hydrogen. Palladium membrane purifiers systems, and reformer systems need replacement thermocouples and heaters every few years. Understanding the required operating and maintenance procedures is an important part of making an informed decision.

Conclusion:

Cylinder hydrogen supplies are the simplest sources for labs but present a safety, cost, and handling concerns, particularly associated with cylinder change-outs. Generators tend to be more up-front expensive than cylinders but offer safety benefits as well as benefits of continuous supply and consistent purity. They are particularly attractive alternative for larger labs where large hydrogen supply can present larger safety risks, and larger operating costs.

R. E. Buxbaum, January 30, 2013, partially updated Apr. 2022.

What is the best hydrogen storage medium?

Answering best questions is always tricky since best depends on situation, but I’ll cover some hydrogen storage options here, and I’ll try to explain where our product options (cylinder gas purifiers and methanol-water reformers) fit in.

The most common laboratory option for hydrogen storage is inside a tank; typically this tank is made of steel, but it can be made of aluminum, fiberglass or carbon fiber. Tanks are the most convenient source for small volume users since they are instantly ready for delivery at any pressure up to the storage pressure; typically that’s 2000 psi (135 atm) though 10,000 (1350 atm) is available by special order. The maximum practical density for this storage is about 50 g/liter, but this density ignores the weight of the tank. The tank adds a factor of 20 or to the weight, making tanks a less-favored option for mobile users. Tanks also add significantly to the cost. They also tend to add impurities to the gas, and there’s a safety issue too: tanks sometimes fall over, and compressed gas can explode. For small-volume, non-mobile users, one can address safety by chaining up ones tank and adding a metal membrane hydrogen purifier; This is one of our main products.

Another approach is liquid hydrogen; The density of liquid hydrogen is higher than of gas, about 68 g/liter, and you don’t need as a tank that’s a big or heavy. One problem is that you have to keep the liquid quite cold, about 25 K. There are evaporative losses too, and if the vent should freeze shut you will get a massive explosion. This is the storage method preferred by large users, like NASA.

Moving on to metal hydrides. These are heavy and rather expensive but they are safer than the two previous options. To extract hydrogen from a metal hydride bed the entire hydride bed has to be heated, and this adds complexity. To refill the bed, it generally has to be cooled, and this too adds complexity. Generally, you need a source of moderately high pressure, clean, dry hydrogen to recharge a bed. You can get this from either an electrolysis generator, with a metal membrane hydrogen purifier, or by generating the hydrogen from methanol using one of our membrane reactor hydrogen generators.

Borohydrides are similar to metal hydrides, but they can flow. Sorry to say, they are more expensive than normal metal hydrides and they can not be regenerated.They are ideal for some military use

And now finally, chemical materials: water, methanol, and ammonia. Chemical compounds are a lot cheaper than metal hydrides or metal borohydrides, and tend to be far more readily available and transportable being much lighter in weight. Water and/or methanol contains 110 gm of H2/liter;  ammonia contains 120 gms/liter, and the tanks are far lighter and cheaper too. Polyethylene jugs weighing a few ounces suffices to transport gallon quantities of water or methanol and, while not quite as light, relatively cheap metallic containers suffice to hold and transport ammonia.

The optimum choice of chemical storage varies with application and customer need. Water is the safest option, but it can freeze in the cold, and it does not contain its own chemical energy. The energy to split the water has to come externally, typically from electricity via electrolysis. This makes water impractical for mobile applications. Also, the hydrogen generated from water electrolysis tends to be impure, a problem for hydrogen that is intended for storage or chemical manufacture. Still, there is a big advantage to forming hydrogen from something that is completely non-toxic, non-flammable, and readily available, and water definitely has a place among the production options.

Methanol contains its own chemical energy, so hydrogen can be generated by heating alone (with a catalyst), but it is toxic to drink and it is flammable. I’ve found a  my unique way of making hydrogen from methanol-water using  a membrane reactor. Go to my site for sales and other essays.

Finally, ammonia provides it’s own chemical energy like methanol, and is flammable, like methanol; we can convert it to hydrogen with our membrane reactors like we can methanol, but ammonia is far more toxic than methanol, possessing the power to kill with both its vapors and in liquid form. We’ve made ammonia reformers, but prefer methanol.

How and why membrane reactors work

Here is a link to a 3 year old essay of mine about how membrane reactors work and how you can use them to get past the normal limits of thermodynamics. The words are good, as is the example application, but I think I can write a shorter version now. Also, sorry to say, when I wrote the essay I was just beginning to make membrane reactors; my designs have gotten simpler since.

At left, for example, is a more modern, high pressure membrane reactor design. A common size is  72 tube reactor assembly; high pressure. The area around the shell is used for heat transfer. Normally the reactor would sit with this end up, and the tube area filled or half-filled with catalyst, e.g. for the water gas shift reaction, CO + H2O –> CO2 + H2 or for the methanol reforming CH3OH + H2O –> 3H2 + CO2, or ammonia cracking 2NH3 –> N2 + 3H2. According to normal thermodynamics, the extent of reaction for these reactions will be negatively affected by pressure (WGS is unaffected). Separation of the hydrogen generally requires high pressure and a separate step or two. This setup combines the steps of reaction with separation, give you ultra high purity, and avoids the normal limitations of thermodynamics.

Once equilibrium is reached in a normal reactor, your only option to drive the reaction isby adjusting the temperature. For the WGS, you have to operate at low temperatures, 250- 300 °C, if you want high conversion, and you have to cool externally to remove the heat of reaction. In a membrane reactor, you can operate in your preferred temperature ranges and you don’t have to work so hard to remove, or add heat. Typically with a MR, you want to operate at high reactor pressures, and you want to extract hydrogen at a lower pressure. The pressure difference between the reacting gas and the extracted hydrogen allows you to achieve high reaction extents (high conversions) at any temperature. The extent is higher because you are continuously removing product – H2 in this case.

Here’s where we sell membrane reactors; we also sell catalyst and tubes.