With all the attention on electric cars, I figure that we’re either at the dawn of electric propulsion or of electric propulsion hype. Elon Musk’s Tesla motor car company stock is now valued at $59 B, more than GM or Ford despite the company having massive losses and few cars. It’s a valuation that, I suspect, hangs on the future of autonomous vehicles, a future whose form is uncertain. In this space, I suspect that hydrogen-battery hybrids make more sense than batteries alone, and that the first large-impact uses will be trucks and busses — vehicles that go long distance on highways.
Currently there are only two brands of autonomous vehicle available for sale in the US: the Cadillac CT6, a gasoline hybrid, and the Tesla, a pure battery vehicle. Neither work well except on highways because there are fewer on-highway driver-issues. Currently, the CT6 allows you to take your hands off the wheel — see review here. This, to me, is a big deal: it’s the only real point of autonomous control, and if one can only do this on the highway, that’s still great. Highway driving gets tiring after the first hundred miles or so, and any relief is welcome. With Tesla cars, you can never take your hand off the wheel or the car stops.
That battery cars compete, cost wise, I suspect, is only possible because the US government highly subsidizes the battery cost. Musk hides the true cost of the battery, I suspect, among the corporate losses. Without this subsidy, hydrogen – hybrid vehicles, I suspect, would be far cheaper than Tesla while providing better range, see my calculation here. Adding to the advantage of hybrids over our batteries, the charge time is much faster. This is very important for highway vehicles traveling any significant distance. While hydrogen fuel isn’t as cheap as gasoline, it’s becoming cheaper — now about double the price of gasoline on a per mile basis, and it’s far cheaper than batteries when the wear-and tear life of the batter is included. And unlike gasoline, hydrogen propulsion is pollution-free and electric.
Electric propulsion seems better suited to driverless vehicles than gasoline propulsion because of how easy it is to control electricity. Gasoline vehicles can have odd acceleration issues, e.g. when the gasoline gets wet. And it’s not like there are no hydrogen fueling stations. Hydrogen, fuel-cell power has become a major competitor for fork-lifts, and has recently had its ten millionth refueling in that application. The same fueling stations that serve fork-lift users could serve the self-driving truck and bus market. For round the town use, hydrogen vehicles could use battery power along (plug-in hybrid mode). A vehicle of this sort could have very impressive performance. A Dutch company has begun to sell kits to convert Tesla model S autos to a plug-in hydrogen hybrid. The result boasts a 620 mile (1000 km) range instead of the normal 240 miles; see here. On the horizon, Hyundai has debuted the self-driving “Nexo” with a range of 370 miles. Self-driving Nexos were used to carry spectators between venues at the Pyongyang olympics. The Toyota Mirai (312 miles) and the Honda Clarity Fuel Cell (366 miles) can be expected to début with similar capabilities in the near future.
In the near-term, trucks and busses seem more suited to hydrogen than general-use cars because of the localization of hydrogen refueling, Southern California has some 36 public hydrogen refueling stations at last count, but that’s too few for most personal car users. Other states have even fewer spots; Michigan has only two where one can drive up and get hydrogen. A commercial trucking company can work around this if they go between fixed depots that may already have hydrogen dispensers, or can be fitted with dispensers. Ideally they use the same dispensers as the forklifts. If one needs extra range one can carry a “hydrogen Jerry can” or two — each jerry can providing an extra 20-30 miles of emergency range. I do not see electric vehicles working as well for trucks and busses because the charge times are too slow, the range is too modest, and the electric power need is too large. To charge a 100 kWhr battery in an hour requires an electric feed of over 100 kW, about as much as a typical mall. With a, more-typical 24kW (240 V at 100 Amps) service the fastest you can recharge would be 4 1/2 hours.
So why not stick to gasoline, as with the Cadillac? My first, simple answer is electric control simplicity. A secondary answer is the ability to use renewable power from wind, solar, and nuclear; there seems to be a push for renewable and electric or hydrogen vehicles make use of this power. Of these two, only hydrogen provides the long-range, fast fueling necessary to make self-driving trucks and busses worthwhile.
Robert Buxbaum March 12, 2018. My company, REB Research provides hydrogen purifiers and hydrogen generators.
Pingback: Most traffic deaths are from driving too slow | REB Research Blog
O dear O dear. Off we go again Hydrogen at 700 bar. When big oil could move ammonia around the globe as a Liquid, just like Hydrocarbons. Then all we need is a soil cheap tank in our event to hold the Liquidfiy Ammonia, which is then run through a cracker, and out comes Hydrogen gas at you got it in one just 1 bar into a down sized fuel cell, and through the power electronics keeps the batteries top up running on light load 24/7. Now drive you proper green car home, go off grid, till you have to pop down to your local filling station. QED “We all live in a Green Submarine” . Drop me aline to :- richardverecompton@gmail.com