Standing on the flat roof of my lab / factory building, I notice that virtually all of my neighbors’ roofs are black, covered by tar or bitumen. My roof was black too until three weeks ago; the roof was too hot to touch when I’d gone up to patch a leak. That’s not quite egg-frying hot, but I came to believe my repair would last longer if the roof stayed cooler. So, after sealing the leak with tar and bitumen, we added an aluminized over-layer from Ace hardware. The roof is cooler now than before, and I notice a major drop in air conditioner load and use.
My analysis of our roof coating follows; it’s for Detroit, but you can modify it for your location. Sunlight hits the earth carrying 1300 W/m2. Some 300W/m2 scatters as blue light (for why so much scatters, and why the sky is blue, see here). The rest, 1000 W/m2 or 308 Btu/ft2hr, comes through or reflects off clouds on a cloudy day and hits buildings at an angle determined by latitude, time of day, and season of the year.
Detroit is at 42° North latitude so my roof shows an angle of 42° to the sun at noon in mid spring. In summer, the angle is 20°, and in winter about 63°. The sun sinks lower on the horizon through the day, e.g. at two hours before or after noon in mid spring the angle is 51°. On a clear day, with a perfectly black roof, the heating is 308 Btu/ft2hr times the cosine of the angle.
To calculate our average roof heating, I integrated this heat over the full day’s angles using Euler’s method, and included the scatter from clouds plus an absorption factor for the blackness of the roof. The figure below shows the cloud cover for Detroit.
Based on this and an assumed light absorption factor of σ = .9 for tar and σ = .2 after aluminum. I calculate an average of 105 Btu/ft2hr heating during the summer for the original black roof, and 23 Btu/ft2hr after aluminizing. Our roof is still warm, but it’s no longer hot. While most of the absorbed heat leaves the roof by black body radiation or convection, enough enters my lab through 6″ of insulation to cause me to use a lot of air conditioning. I calculate the heat entering this way from the roof temperature. In the summer, an aluminum coat is a clear winner.
Detroit has a cold winter too, and these are months where I’d benefit from solar heat. I find it’s so cloudy in winter that, even with a black roof, I got less than 5 Btu/ft2hr. Aluminizing reduced this heat to 1.2 Btu/ft2hr, but it also reduces the black-body radiation leaving at night. I should find that I use less heat in winter, but perhaps more in late spring and early fall. I won’t know the details till next year, but that’s the calculation.
The REB Research laboratory is located at 12851 Capital St., Oak Park, MI 48237. We specialize in hydrogen separations and membrane reactors. By Dr. Robert Buxbaum, June 16, 2013
Pingback: Physics of no fear, no fall ladders | REB Research Blog