Tag Archives: black holes

Our expanding, black hole universe

In a previous post I showed a classical derivation of the mass-to-size relationship for black -holes and gave evidence to suggest that our universe (all the galaxies together) constitute a single, large black hole. Everything is inside the black hole and nothing outside but empty space — We can tell this because you can see outside from inside a black hole — it’s only others, outside who can not see in (Finkelstein, Phys Rev. 1958). Not that there appear to be others outside the universe, but if they were, they would not be able to see us.

In several ways having a private, black hole universe is a gratifying thought. It provides privacy and a nice answer to an easily proved conundrum: that the universe is not infinitely big. The black hole universe that ends as the math requires, but not with a brick wall, as i the Hitchhiker’s guide (one of badly-laid brick). There are one or two problems with this nice tidy solution. One is that the universe appears to be expanding, and black holes are not supposed to expand. Further, the universe appears to be bigger than it should be, suggesting that it expanded faster than the speed of light at some point. its radius now appears to be 40-46 billion light years despite the universe appearing to have started as a point some 14 billion years ago. That these are deeply disturbing questions does not stop NASA and Nova from publishing the picture below for use by teachers. This picture makes little sense, but it’s found in Wikipedia and most, newer books.

Standard picture of the big bang theory. Expansions, but no contractions.

Standard picture of the big bang theory: A period of faster than light expansion (inflation) then light-speed, accelerating expansion. NASA, and Wikipedia.

We think the creation event occurred some 14 billion years ago because we observe that the majority of galaxies are expanding from us at a rate proportional to their distance from us. From this proportionality between the rate of motion and the distance from us, we conclude that we were all in one spot some 14 billion years ago. Unfortunately, some of the most distant galaxies are really dim — dimmer than they would be if they were only 14 billion light years away. The model “explains this” by a period of inflation, where the universe expanded faster than the speed of light. The current expansion then slowed, but is accelerating again; not slowing as would be expected if it were held back by gravity of the galaxies. Why hasn’t the speed of the galaxies slowed, and how does the faster-than-light part work? No one knows. Like Dr. Who’s Tardis, our universe is bigger on the inside than seems possible.

Einstein's preferred view of the black-hole universe is one that expands and contracts at some (large) frequency. It could explain why the universe is near-uniform.

Einstein’s oscillating universe: it expands and contracts at some (large) frequency. Oscillations would explain why the universe is near-uniform, but not why it’s so big or moving outward so fast.

Einstein’s preferred view was of an infinite space universe where the mass within expands and contracts. He joked that two things were infinite, the universe and stupidity… see my explanation... In theory, gravity could drive the regular contractions to an extent that would turn entropy backward. Einstein’s oscillating model would explain how the universe is reasonably stable and near-uniform in temperature, but it’s not clear how his universe could be bigger than 14 billion light years across, or how it could continue to expand as fast as it does. A new view, published this month suggests that there are two universes, one going forward in time the other backward. The backward in time part of the universe could be antimatter, or regular matter going anti entropy (that’s how I understand it — If it’s antimatter, we’d run into the it all the time). Random other ideas float through the physics literature: that we’re connected to other space through a black hole/worm hole, perhaps to many other universes by many worm holes in fractal chaos, see for example, Physics Reports, 1992.

The forward-in-time expansion part of the two universes model.

The forward-in-time expansion part of the two universes model. This drawing, like the first, is from NASA.

For all I know, there are these many black hole  tunnels to parallel universes. Perhaps the universal constant and all these black-hole tunnels are windows on quantum mechanics. At some point the logic of the universe seems as perverse as in the Hitchhiker guide.

Something I didn’t mention yet is the Higgs boson, the so-called God particle. As in the joke, it’s supposed to be responsible for mass. The idea is that all particles have mass only by interaction with these near-invisible Higgs particles. Strong interactions with the Higgs are what make these particles heavier, while weaker – interacting particles are perceived to have less gravity and inertia. But this seems to me to be the theory that Einstein’s relativity and the 1919 eclipse put to rest. There is no easy way for a particle model like this to explain relativistic warping of space-time. Without mass being able to warp space-time you’d see various degrees of light bending around the sun, and preferential gravity in the direction of our planet’s motion: things we do not see. We’re back in 1900, looking for some plausible explanation for the uniform speed of light and Lawrence contraction of space.As likely an explanation as any the_hitchhikers_guide_to_the_galaxy

Dr. r µ ßuxbaum. December 20, 2014. The  meaning of the universe could be 42 for all I know, or just pickles down the worm hole. No religion seems to accept the 14 billion year old universe, and for all I know the God of creation has a wicked sense of humor. Carry a towel and don’t think too much.

A simple, classical view of and into black holes

Black holes are regions of the universe where gravity is so strong that light can not emerge. And, since the motion of light is related to the fundamental structure of space and time, they must also be regions where space curves on itself, and where time appears to stop — at least as seen by us, from outside the black hole. But what does space-time look like inside the black hole.

NASA's semi-useless depiction of a black hole -- one they created for educators. I'm not sure what you're supposed to understand from this.

NASA’s semi-useless depiction of a black hole — one they created for educators. Though it’s sort of true, I’m not sure what you’re supposed to understand from this. I hope to present a better version.

From our outside perspective, an object tossed into a black hole will appear to move slower as it approaches the hole, and at the hole horizon it will appear to have stopped. From the inside of the hole, the object appears to just fall right in. Some claim that tidal force will rip it apart, but I think that’s a mistake. Here’s a simple, classical way to calculate the size of a black hole, and to understand why things look like they do and do what they do.

Lets begin with light, and accept, for now, that light travels in particle form. We call these particles photons; they have both an energy and a mass, and mostly move in straight lines. The energy of a photon is related to its frequency by way of Plank’s constant. E = hν, where E is the photon energy, h is Plank’s constant and ν is frequency. The photon mass is related to its energy by way of the formula m=E/c2, a formula that is surprisingly easy to derive, and often shown as E= mc2. The version that’s relevant to photons and black holes is:

m =  hν/c2.

Now consider that gravity affects ν by affecting the energy of the photon. As a photon goes up, the energy and frequency goes down as energy is lost. The gravitational force between a star, mass M, and this photon, mass m, is described as follows:

F = -GMm/r2

where F is force, G is the gravitational constant, and r is the distance of the photon from the center of the star and M is the mass of the star. The amount of photon energy lost to gravity as it rises from the surface is the integral of the force.

∆E = – ∫Fdr = ∫GMm/r2 dr = -GMm/r

Lets consider a photon of original energy E° and original mass m°= E°/c2. If ∆E = m°c2, all the energy of the original photon is lost and the photon disappears. Now, lets figure out the height, r° such that all of the original energy, E° is lost in rising away from the center of a star, mass M. That is let calculate the r for which ∆E = -E°. We’ll assume, for now, that the photon mass remains constant at m°.

E° = GMm°/r° = GME°/c2r°.

We now eliminate E° from the equation and solve for this special radius, r°:

r° =  GM/c2.

This would be the radius of a black hole if space didn’t curve and if the mass of the photon didn’t decrease as it rose. While neither of these assumptions is true, the errors nearly cancel, and the true value for r° is double the size calculated this way.

r° = 2GM/c2

r° = 2.95 km (M/Msun).

schwarzschild

Karl Schwarzschild 1873-1916.

The first person to do this calculation was Karl Schwarzschild and r° is called the Schwarzschild radius. This is the minimal radius for a star of mass M to produce closed space-time; a black hole. Msun is the mass of our sun, sol, 2 × 1030 kg.  To make a black hole one would have to compress the mass of our sun into a ball of 2.95 km radius, about the size of a small asteroid. Space-time would close around it, and light starting from the surface would not be able to escape.

As it happens, our sun is far bigger than an asteroid and is not a black hole: we can see light from the sun’s surface with minimal space-time deformation (there is some seen in the orbit of Mercury). Still, if the mass were a lot bigger, the radius would be a lot bigger and the density would be less. Consider a black hole the same mass as our galaxy, about 1 x1012 solar masses, or 2 x 1042  kg. This number is ten times what you might expect since our galaxy is 90% dark matter. The Schwarzschild radius with the mass of our galaxy would be 3 x 1012 km, or 0.3 light years. That’s far bigger than our solar system, and about 1/20 the distance to the nearest star, Alpha Centauri. This is a very big black hole, though it is far smaller than our galaxy, 5 x 1017 km, or 50,000 light years. The density, though is not all that high.

Now let’s consider a black hole comprising 15 billion galaxies, the mass of the known universe. The folks at Cornell estimate the sum of dark and luminous matter in the universe to be 3 x 1052 kg, about 15 billion times the mass of our galaxy. This does not include the mass hidden in the form of dark energy, but no one’s sure what dark energy is, or even if it really exists. A black hole encompassing this, known mass would have a Schwarzschild radius about 4.5 billion light years, or about 1/3 the actual size of the universe when size is calculated based on its Hubble-constant age, 14 billion years. The universe may be 2-3 times bigger than this on the inside because space is curved and, rather like Dr. Who’s Tardis it’s bigger on the inside, but in astronomical terms a factor of 3 or 10 is nothing: the actual size of the known universe is remarkably similar to its Schwarzschild radius, and this is without considering the mass its dark energy must have if it exists.

Standard picture of the big bang theory. Dark energy causes the latter-stage expansion.

Standard picture of the big bang theory. Dark energy causes the latter-stage expansion.

The evidence for dark energy is that the universe is expanding faster and faster instead of slowing. See figure. There is no visible reason for the acceleration, but it’s there. The source of the energy might be some zero-point effect, but wherever it comes from, the significant amount of energy must have significant mass, E = mc2. If the mass of this energy is 3 to 10 times the physical mass, as seems possible, we are living inside a large black hole, something many physicists, including Einstein considered extremely likely and aesthetically pleasing. Einstein originally didn’t consider the possibility that the hole could be expanding, but a reviewer of one of his articles convinced him it was possible.

Based on the above, we now know how to calculate the size of a black hole of any mass, and we now know what a black hole the size of the universe would look like from the inside. It looks just like home. Wait for further posts on curved space-time. For some reason, no religion seems to embrace science’s 14 billion year old, black-hole universe (expanding or not). As for the tidal forces around black holes, they are horrific only for the small black holes that most people write about. If the black hole is big, the tidal forces are small.

 Dr. µß Buxbaum Nov 17, 2014. The idea for this post came from an essay by Isaac Asimov that I read in a collection called “Buy Jupiter.” You can drink to the Schwarzchild radius with my new R° cocktail.

Two things are infinite

Einstein is supposed to have commented that there are only two things that are infinite: the size of the universe and human stupidity, and he wasn’t sure about the former.

While Einstein still appears to be correct about the latter infinite, there is now more disagreement about the size of the universe. In Einstein’s day, it was known that the universe appeared to have originated in a big bang with all mass radiating outward at a ferocious rate. If the mass of the universe were high enough, and the speed were slow enough the universe would be finite and closed in on itself. That is, it would be a large black hole. But in Einstein’s day, the universe didn’t look to have enough mass. It thus looked like the universe was endless, but non-uniform. It appeared to be mostly filled with empty space — something that kept us from frying from the heat of distant stars.

Since Einstein’s day we’ve discovered more mass in the universe, but not quite enough to make us a black hole given the universe’s size. We’ve discovered neutron stars and black holes, dark concentrated masses, but not enough of them. We’ve discovered neutrinos, tiny neutral particles that fill space, and we’ve shown that they have rest-mass enough that neutrinos are now thought to make up most of the mass of the universe. But even with these dark-ish matter, we still have not found enough for the universe to be non-infinite, a black hole. Worse yet, we’ve discovered dark energy, something that keeps the universe expanding at nearly the speed of light when you’d think it should have slowed by now; this fast expansion makes it ever harder to find enough mass to close the universe (why we’d want to close it is an aesthetic issue discussed below).

Still, there is evidence for another, smaller mass item floating in space, the axion. This particle, and it’s yet-smaller companion, the axiono, may be the source of both the missing dark matter and the dark energy, see figure below. Axions should have masses about 10-7 eV, and should interact enough with matter to explain why there is more matter than antimatter while leaving the properties of matter otherwise unchanged. From normal physics, you’d expect an equal amount of matter and antimatter as antimatter is just matter moving backwards in time. Further, the light mass and weak interactions could allow axions to provide a halo around galaxies (helpful for galactic stability).

Mass of the Universe with Axions, no axions. Here is a plot from a recent SUSY talk (2010) http://susy10.uni-bonn.de/data/KimJEpreSUSY.pdf

Mass of the Universe with Axions, no axions. Here is a plot from a recent SUSY talk (2010) http://susy10.uni-bonn.de/data/KimJEpreSUSY.pdf

The reason you’d want the universe to be closed is aesthetic. The universe is nearly closed, if you think in terms of scientific numbers, and it’s hard to see why the universe should not then be closed. We appear to have an awful lot of mass, in terms of grams or kg, but appear to have only 20% of the required mass for a black hole. In terms of orders of magnitudes we are so close that you’d think we’d have 100% of the required mass. If axions are found to exist, and the evidence now is about 50-50, they will interact with strong magnetic fields so that they change into photons and photons change into axions. It is possible that the mass this represents will be the missing dark matter allowing our universe to be closed, and will be the missing dark energy.

As a final thought I’ve always wondered why religious leaders have been so against mention of “the big bang.” You’d think that the biggest boost to religion would be knowledge that everything appeared from nothing one bright and sunny morning, but they don’t seem to like the idea at all. If anyone who can explain that to me, I’d appreciate it. Thanks, Robert E. B.