Tag Archives: fire

A Nuclear-blast resistant paint: Starlite and co.

About 20 years ago, an itinerate inventor named Maurice Ward demonstrated a super insulating paint that he claimed would protect most anything from intense heat. He called it Starlite, and at first no one believed the claims. Then he demonstrated it on TV, see below, by painting a paper-thin layer on a raw egg. He then blasting the egg with a blow torch for a minute till the outside glowed yellow-red. He then lifted the egg with his hand; it was barely warm! And then, on TV, he broke the shell to show that the insides were totally raw, not only uncooked but completely unchanged, a completely raw egg. The documentary below shows the demonstration and describes what happened next (as of 10 years ago) including an even more impressive series of tests.

Intrigued, but skeptical, researchers at the US White Sands National Laboratory, our nuclear bomb test lab, asked for samples. Ward provided pieces of wood painted as before with a “paper thin” layer of Starlite. They subjected these to burning with an oxyacetylene torch, and to a simulated nuclear bomb blast. The nuclear fireball radiation was simulated by an intense laser at the site. Amazing as it sounds, the paint and the wood beneath emerging barely scorched. The painted wood was not damaged by the laser, nor by an oxyacetylene torch that could burn through 8 inches of steel in seconds.

The famous egg, blow torch experiment.

The inventor wouldn’t say what the paint was made of, or what mechanism allowed it to do this, but clearly it had military and civilian uses. It seems it would have prevented the twin towers from collapsing, or would have greatly extended the time they stayed standing. Similarly, it would protect almost anything from a flame-thrower.

As for the ingredients, Ward said it was non-toxic, and that it contained mostly organic materials, plus borax and some silica or ceramic. According to his daughter, it was “edible”; they’d fed it to dogs and horses without adverse effects.

Starlite coasted wood. The simulated nuclear blast made the char mark at left.

The White sands engineers speculate that the paint worked by combination of ablation and intumescence, controlled swelling. The surface, they surmised, formed a foam of char, pure carbon, that swelled to make tiny chambers. If these chambers are small enough, ≤10 nm or so, the mean free path of gas molecules will be severely reduced, reducing the potential for heat transfer. Even more insulting would be if the foam chambers were about 1 nm. Such chambers will be, essentially air free, and thus very insulating. For a more technical view of how molecule motion affects heat transfer rates, see my essay, here.

Sorry to say we don’t know how big the char chambers are, or if this is how the material works. Ward retained the samples and the formula, and didn’t allow close examination. Clearly, if it works by a char, the char layer is very thin, a few microns at most.

Because Maurice Ward never sold the formula or any of the paint in his lifetime, he made no money on the product. He kept closed muted about it, as he knew that, as soon as he patented, or sold, or let anyone know what was in the paint, there would be copycats, and patent violations, and leaks of any secret formula. Even in the US, many people and companies ignore patent rights, daring you to challenge them in court. And it’s worse in foreign countries where the government actively encourages violation. There are also legal ways around a patent: A copycat inventor looks for ways to get the same behavior from materials that are not covered in the patent. Ward could not get around these issues, so he never patented the formula or sold the rights. He revealed the formula only to some close family members, but that was it till May, 2020, when a US company, Thermashield, LLC, bought Ward’s lab equipment and notes. They now claim to make the original Starlite. Maybe they do. The product doesn’t seem quite as good. I’ve yet to see an item scorched as little as the sample above.

Many companies today are now selling versions of Starlite. The formulas are widely different, but all the paints are intumescent, and all the formulas are based on materials Ward would have had on hand, and on the recollections of the TV people and those at White Sands. I’ve bought one of these copycat products, not Thermashield, and tested it. It’s not half bad: thicker in consistency than the original, or as resistive.

There are home-made products too, with formulas on the internet and on YouTube. They are applied more like a spackle or a clay. Still, these products insulate remarkably well: a lot better than any normal insulator I’d seen.

If you’d like to try this as a science fair project, among the formulas you can try; a mix of glue, baking soda, borax, and sugar, with some water. Some versions use sodium silicate too. The Thermoshield folks say that this isn’t the formula, that there is no PVA glue or baking soda in their product. Still it works.

Robert Buxbaum, March 13, 2022. Despite my complaints about the US patent system, it’s far better than in any other country I’ve explored. In most countries, patents are granted only as an income stream for the government, and inventors are considered villains: folks who withhold the fruits of their brains for unearned money. Horrible.

The Hindenburg: mainly the skin burnt

The 1937 Hindenburg disaster is often mentioned as proof that hydrogen is too flammable and dangerous for commercial use. Well hydrogen is flammable, and while the Hindenburg was full of hydrogen when it started burning, but a look at a color photograph of the fire ( below), or at the B+W  Newsreel film of the fire, suggests that it is not the hydrogen burning, but the skin of the zeppelin and the fuel. Note the red color of the majority flame, and note the black smoke. Hydrogen fires are typically invisible or very light blue, and hydrogen fires produce no smoke.

Closeup of the Hindenburg burning. It is the skin that burns, not the gaseous hydrogen

Closeup of the Hindenburg burning. It is the skin and gasoline that burns, not the gaseous hydrogen.

The Hindenburg was not a simple hydrogen balloon either. It was a 15 story tall airship with state-rooms, a dining room and an observation deck. It carried 95 or so passengers and crew. There was plenty of stuff to burn besides hydrogen. Nor could you say that a simple spark had set things off. The Hindenburg crossed the ocean often: every 2 1/2 days. Lightning strikes were common, as were “Saint Elmo’s fire,” and static electricity discharges. And passengers smoked onboard. Holes and leaks in the skin were also common, both on the Hindenburg and on earlier airships. The hydrogen-filled, Graf Zeppelin logged over 1 million flight miles and over 500 trips with no fires. And it’s not like helium-filled zeppelins and blimps are much safer. The photo below shows the fire and crash of a helium-filled Goodyear blimp, “Spirit of Safety”, June, 2011. Hydrogen has such a very high thermal conductivity that it is nearly as hard to light as helium. I recently made this video where I insert a lit cigar into a balloon filled with hydrogen. There is no fire, but the cigar goes out.  In technical terms, hydrogen is said to have a low upper combustion limit.

Helium-filled goodyear blimp catches fire and burns to destruction.

Helium-filled goodyear blimp “spirit of safety” catches fire and burns before crashing. It’s not the helium burning.

The particular problem with the Hindenburg seems to have been its paint, skin and fuel, the same problems as caused the fire aboard the “Spirit of Safety.” The skin of the Hindenburg was cotton, coated with a resin-dope paint that contained particles of aluminum and iron-oxide to help conduct static electricity. This combination is very flammable, essentially rocket fuel, and the German paint company went on to make rocket fuel of a similar composition for the V2 rockets. And the fuel was flammable too: gasoline. The pictures of the Hindenburg disaster suggest (to me) that it is the paint and the underlying cotton skin that burned, or perhaps the fuel. A similar cause seems to have beset the “Spirit of Safety.” For the Hindenburg’s replacement, The Graf II, the paint composition was changed to replace the aluminum powder with graphite – bronze, a far less flammable mixture, and more electrically conductive. Sorry to say, there was no reasonably alternative to gasoline. To this day, much of sport ballooning is done with hydrogen; statistically it appears no more dangerous than hot air ballooning.

It is possible that the start of the fire was a splash of gasoline when the Hindenburg made a bumpy contact with the ground. Another possibility is sabotage, the cause in a popular movie (see here), or perhaps an electric spark. According to Aviation Week, gasoline spoiled on a hot surface was the cause of the “Spirit of Safety fire,” and the Hindenburg disaster looks suspiciously similar. If that’s the case, of course, the lesson of the Hindenburg disaster is reversed. For safety, use hydrogen, and avoid gasoline.

Dr. Robert E. Buxbaum, January 8, 2016. My company, REB Research, makes hydrogen generators, and other hydrogen equipment. If you need hydrogen for weather balloons, or sport ballooning, or for fuel cells, give us a call.

Near-Poisson statistics: how many police – firemen for a small city?

In a previous post, I dealt with the nearly-normal statistics of common things, like river crests, and explained why 100 year floods come more often than once every hundred years. As is not uncommon, the data was sort-of like a normal distribution, but deviated at the tail (the fantastic tail of the abnormal distribution). But now I’d like to present my take on a sort of statistics that (I think) should be used for the common problem of uncommon events: car crashes, fires, epidemics, wars…

Normally the mathematics used for these processes is Poisson statistics, and occasionally exponential statistics. I think these approaches lead to incorrect conclusions when applied to real-world cases of interest, e.g. choosing the size of a police force or fire department of a small town that rarely sees any crime or fire. This is relevant to Oak Park Michigan (where I live). I’ll show you how it’s treated by Poisson, and will then suggest a simpler way that’s more relevant.

First, consider an idealized version of Oak Park, Michigan (a semi-true version until the 1980s): the town had a small police department and a small fire department that saw only occasional crimes or fires, all of which required only 2 or 4 people respectively. Lets imagine that the likelihood of having one small fire at a given time is x = 5%, and that of having a violent crime is y =5% (it was 6% in 2011). A police department will need to have to have 2 policemen on call at all times, but will want 4 on the 0.25% chance that there are two simultaneous crimes (.05 x .05 = .0025); the fire department will want 8 souls on call at all times for the same reason. Either department will use the other 95% of their officers dealing with training, paperwork, investigations of less-immediate cases, care of equipment, and visiting schools, but this number on call is needed for immediate response. As there are 8760 hours per year and the police and fire workers only work 2000 hours, you’ll need at least 4.4 times this many officers. We’ll add some more for administration and sick-day relief, and predict a total staff of 20 police and 40 firemen. This is, more or less, what it was in the 1980s.

If each fire or violent crime took 3 hours (1/8 of a day), you’ll find that the entire on-call staff was busy 7.3 times per year (8x365x.0025 = 7.3), or a bit more since there is likely a seasonal effect, and since fires and violent crimes don’t fall into neat time slots. Having 3 fires or violent crimes simultaneously was very rare — and for those rare times, you could call on nearby communities, or do triage.

In response to austerity (towns always overspend in the good times, and come up short later), Oak Park realized it could use fewer employees if they combined the police and fire departments into an entity renamed “Public safety.” With 45-55 employees assigned to combined police / fire duty they’d still be able to handle the few violent crimes and fires. The sum of these events occurs 10% of the time, and we can apply the sort of statistics above to suggest that about 91% of the time there will be neither a fire nor violent crime; about 9% of the time there will be one or more fires or violent crimes (there is a 5% chance for each, but also a chance that 2 happen simultaneously). At least two events will occur 0.9% of the time (2 fires, 2 crimes or one of each), and they will have 3 or more events .09% of the time, or twice per year. The combined force allowed fewer responders since it was only rarely that 4 events happened simultaneously, and some of those were 4 crimes or 3 crimes and a fire — events that needed fewer responders. Your only real worry was when you have 3 fires, something that should happen every 3 years, or so, an acceptable risk at the time.

Before going to what caused this model of police and fire service to break down as Oak Park got bigger, I should explain Poisson statistics, exponential Statistics, and Power Law/ Fractal Statistics. The only type of statistics taught for dealing with crime like this is Poisson statistics, a type that works well when the events happen so suddenly and pass so briefly that we can claim to be interested in only how often we will see multiples of them in a period of time. The Poisson distribution formula is, P = rke/r! where P is the Probability of having some number of events, r is the total number of events divided by the total number of periods, and k is the number of events we are interested in.

Using the data above for a period-time of 3 hours, we can say that r= .1, and the likelihood of zero, one, or two events begin in the 3 hour period is 90.4%, 9.04% and 0.45%. These numbers are reasonable in terms of when events happen, but they are irrelevant to the problem anyone is really interested in: what resources are needed to come to the aid of the victims. That’s the problem with Poisson statistics: it treats something that no one cares about (when the thing start), and under-predicts the important things, like how often you’ll have multiple events in-progress. For 4 events, Poisson statistics predicts it happens only .00037% of the time — true enough, but irrelevant in terms of how often multiple teams are needed out on the job. We need four teams no matter if the 4 events began in a single 3 hour period or in close succession in two adjoining periods. The events take time to deal with, and the time overlaps.

The way I’d dealt with these events, above, suggests a power law approach. In this case, each likelihood was 1/10 the previous, and the probability P = .9 x10-k . This is called power law statistics. I’ve never seen it taught, though it appears very briefly in Wikipedia. Those who like math can re-write the above relation as log10P = log10 .9 -k.

One can generalize the above so that, for example, the decay rate can be 1/8 and not 1/10 (that is the chance of having k+1 events is 1/8 that of having k events). In this case, we could say that P = 7/8 x 8-k , or more generally that log10P = log10 A –kβ. Here k is the number of teams required at any time, β is a free variable, and Α = 1-10 because the sum of all probabilities has to equal 100%.

In college math, when behaviors like this appear, they are incorrectly translated into differential form to create “exponential statistics.” One begins by saying ∂P/∂k = -βP, where β = .9 as before, or remains some free-floating term. Everything looks fine until we integrate and set the total to 100%. We find that P = 1/λ e-kλ for k ≥ 0. This looks the same as before except that the pre-exponential always comes out wrong. In the above, the chance of having 0 events turns out to be 111%. Exponential statistics has the advantage (or disadvantage) that we find a non-zero possibility of having 1/100 of a fire, or 3.14159 crimes at a given time. We assign excessive likelihoods for fractional events and end up predicting artificially low likelihoods for the discrete events we are interested in except going away from a calculus that assumes continuity in a world where there is none. Discrete math is better than calculus here.

I now wish to generalize the power law statistics, to something similar but more robust. I’ll call my development fractal statistics (there’s already a section called fractal statistics on Wikipedia, but it’s really power-law statistics; mine will be different). Fractals were championed by Benoit B. Mandelbrot (who’s middle initial, according to the old joke, stood for Benoit B. Mandelbrot). Many random processes look fractal, e.g. the stock market. Before going here, I’d like to recall that the motivation for all this is figuring out how many people to hire for a police /fire force; we are not interested in any other irrelevant factoid, like how many calls of a certain type come in during a period of time.

To choose the size of the force, lets estimate how many times per year some number of people are needed simultaneously now that the city has bigger buildings and is seeing a few larger fires, and crimes. Lets assume that the larger fires and crimes occur only .05% of the time but might require 15 officers or more. Being prepared for even one event of this size will require expanding the force to about 80 men; 50% more than we have today, but we find that this expansion isn’t enough to cover the 0.0025% of the time when we will have two such major events simultaneously. That would require a 160 man fire-squad, and we still could not deal with two major fires and a simultaneous assault, or with a strike, or a lot of people who take sick at the same time. 

To treat this situation mathematically, we’ll say that the number times per year where a certain number of people are need, relates to the number of people based on a simple modification of the power law statistics. Thus:  log10N = A – βθ  where A and β are constants, N is the number of times per year that some number of officers are needed, and θ is the number of officers needed. To solve for the constants, plot the experimental values on a semi-log scale, and find the best straight line: -β is the slope and A  is the intercept. If the line is really straight, you are now done, and I would say that the fractal order is 1. But from the above discussion, I don’t expect this line to be straight. Rather I expect it to curve upward at high θ: there will be a tail where you require a higher number of officers. One might be tempted to modify the above by adding a term like but this will cause problems at very high θ. Thus, I’d suggest a fractal fix.

My fractal modification of the equation above is the following: log10N = A-βθ-w where A and β are similar to the power law coefficients and w is the fractal order of the decay, a coefficient that I expect to be slightly less than 1. To solve for the coefficients, pick a value of w, and find the best fits for A and β as before. The right value of w is the one that results in the straightest line fit. The equation above does not look like anything I’ve seen quite, or anything like the one shown in Wikipedia under the heading of fractal statistics, but I believe it to be correct — or at least useful.

To treat this politically is more difficult than treating it mathematically. I suspect we will have to combine our police and fire department with those of surrounding towns, and this will likely require our city to revert to a pure police department and a pure fire department. We can’t expect other cities specialists to work with our generalists particularly well. It may also mean payments to other cities, plus (perhaps) standardizing salaries and staffing. This should save money for Oak Park and should provide better service as specialists tend to do their jobs better than generalists (they also tend to be safer). But the change goes against the desire (need) of our local politicians to hand out favors of money and jobs to their friends. Keeping a non-specialized force costs lives as well as money but that doesn’t mean we’re likely to change soon.

Robert E. Buxbaum  December 6, 2013. My two previous posts are on how to climb a ladder safely, and on the relationship between mustaches in WWII: mustache men do things, and those with similar mustache styles get along best.

Link

Some 2-3 years ago I did an interview where I stood inside one of our hydrogen generator shacks (with the generator running) and poked a balloon filled with hydrogen with a lit cigar — twice. No fire, no explosion, either time. It’s not a super hit, but it’s gotten over 5000 views so far. Here it is