Tag Archives: global warming

Germany’s hydrogen trains and boats almost make sense

Germany’s green transition is a disaster. Twenty years ago, Germany had 23 nuclear power plants that generated 30% of the country’s electricity cleanly, cheaply, and reliably. These plants have all been shut by the government as part of a commitment to clean energy. What could be cleaner? Germany has switched to a mix of wind and solar, plus a significant shift to coal power. Wind and solar use a lot of land compared to nuclear, and they break down leaving fields of debris. There is now a lack of electricity to power homes and industries, and what power there is, is unreliable, due to the many dark windless days in Germany.

The lack of reliable electricity is crippling German industry now that Russian gas has been cut off. In this environment, why would the Germans order special trains and boats that burn, hydrogen that’s made from electricity and natural gas? My understanding of the reason is that, Germany sometimes has too much wind power and nothing to do with it. They plan to store this excess by making hydrogen that they can use to power their trains and boats. The cost is high, and the efficiency is poor, but the electricity is free.

Hydrogen is not as compact a fuel as gasoline, nor is it as cheap as electricity, but it’s cleaner than gas, and in some ways it’s better than battery-stored electricity. While hydrogen takes a lot of storage space relative to gasoline, high pressure helps, and the storage is cheaper than with batteries. Also, hydrogen fuel is transferred faster than electric fuels. Trains and ships are chosen for hydrogen because they are good at carrying bulky items. The transition to hydrogen is relatively straightforward with trains, since many are already powered by electricity. Hydrogen fuel cells can make the electricity on board (in theory), while avoiding the need for expensive overhead wires. The idea sort-of makes sense.

Germany’s first hydrogen train. cancelled after 1 year of poor operating.

The first German train to use hydrogen powered them with fuel cells that generated electricity. It began service in October 2022, but the fuel cells proved unreliable. Service ended one year later, October 2023, replaced by polluting diesel (see here). The Hannover line plans to replace these with battery-powered trains over the next few years. There are also plans for a hydrogen-powered ferry, but it is not clear why the ferry should prove more reliable than the train, or cheaper.

San Francisco’s hydrogen-powered ferry, $30 million, 15 knots top speed, 75 passengers, no cars. Long delayed.

In the US, the Biden administration has paid, so far, $30 million for a hydrogen ferry in San Francisco. It’s two years behind schedule and over cost, taking only 75 passengers and no cars at 15 knots, 17mph. In the US, and likely in Germany, most of the hydrogen will be made from natural gas. A better solution, I think would be to power the ferris and trains by natural gas and to store the excess electricity in land-based batteries or as land-based hydrogen for land-based fuel cells.

Germany is committed to electric trains, though, and hydrogen provides a route to power these trains with excess electricity. German customers take the train, in part, because they like them, and in part because German politicians have banned short-hop planes on competing routes, and subsidized electric trains. Yet another option to balance times of excess solar and wind power would be to subsidize electric cars, or at least allow theirs owners to trade electricity: to buy electricity when it’s cheap and resell it to the grid when demand and prices are high.

Robert Buxbaum, June 8, 2024

Arctic Ice has shrunk 1.5% since ’99 and Gore’s inconvenient truth. Is this bad?

At the 1999 Copenhagen Climate Change Summit, Al Gore announced an inconvenient truth: “There is a 75 per cent chance that the entire north polar ice cap, during the summer months, could be completely ice-free within five to seven years.” It was a bold prediction, part of a campaign that got Mr Gore a Nobel Prize and motivated the US to devote billions to stopping global warming. Supposedly 98% of scientists agreed with Mr. Gore and his remedies. Prince Charles and Bill Gates too. Twenty three years later there is still arctic ice, 98.5% as much as in 1999. Two questions arise: 1. Is the ice loss bad? and 2. Why were those 98% of scientists so wrong?

Arctic sea ice extent 1999-2021
Arctic sea ice extent when Al Gore spoke (1999) and since. Not much change, nor clearly for the worse

The second question is far easier than the first: the 98% number was bogus, a lie, like many other climate lies that followed. it was effective at stopping argument, and could not be checked immediately. It bullied scientists who argued that global warming wasn’t bad, or wasn’t man-made, and it gave do-gooders the ability to label their opponents “liars” and “science deniers”. The claim of 98% was used to silence scientists with long, prominent careers. Deniers lost their funding and were no longer published. Other scientists learned to keep quiet. Twenty years later, when the arctic ice wasn’t gone and antarctic ice hit a record extent, the deniers’ careers largely were gone.

Scientists are not stupid, nor independently rich, for the most part. They are dependent on government funding and their employers, the universities are too. As a group they (we) are incapable of stemming the tide of public opinion. This week Biden signed a nearly 1 trillion dollar bill to stop climate change. Every scientist with a chance to get the money will go for it. Whether or not they think a colder earth is good, they will claim it is in their proposals, and imply that their work can stop the natural chaos that is climate. They will ask for their share of the $1T to study the appropriate things: solar cells, corn-based power, and wind turbines. The proposals will not mention the huge costs in mining or land use. Scientists already know they can not get funded for nuclear power, though it works and produces no CO2, nor should can scientists benefit by criticizing China, as the largest source of CO2. That is seen as undermine the green effort at home. When we stop manufacturing at home, BTW, we end up buying the same materials manufactured in China, where they really generate lots of pollution. When asked about this, Biden’s climate chief said not to worry about it, we had to do our part, and Biden would speak to the Chinese. The result is the biggest buildup in coal-fired power plants in the world, with more coming on line.

This second question is at least as important as the first one: is less arctic ice bad? Or, asking more generally, is a warm earth bad? It’s an opinion question; it’s in no way science, impossible to answer definitively. Cold weather is bad for food production, and that’s bad for people, in general. Most people prefer to live where it’s warm, I find. Supposedly polar bears prefer it cold, but I don’t know for sure. I’m not keen to go back to the climate of the ice ages, 10,000- 100,000 years ago when ice covered Canada and you could walk from France to England. I’m not convinced that life was better when the world was 1°C colder. The sea was lower in 1900, but had been higher in the year zero. Less arctic ice means easier shipping. For all I know we may want to make a Northwest Passage. More food and a easier shipping are the convenient truths about global warming.

Robert Buxbaum, August 19, 2022. If you believe any of what I said about Gore/Biden’s green energy, you may like a movie by Michael Moore, Planet of the Humans, see it here. The political greens are not saving energy or cooling the planet, and they know it. It’s a money maker.

Upgrading landfill and digester gas for sale, methanol

We live in a throw-away society, and the majority of it, eventually makes its way to a landfill. Books, food, grass clippings, tree-products, consumer electronics; unless it gets burnt or buried at sea, it goes to a landfill and is left to rot underground. The product of this rot is a gas, landfill gas, and it has a fairly high energy content if it could be tapped. The composition of landfill gas changes, but after the first year or so, the composition settles down to a nearly 50-50 mix of CO2 and methane. There is a fair amount of water vapor too, plus some nitrogen and hydrogen, but the basic process is shown below for wood decomposition, and the products are CO2  and methane.

System for sewage gas upgrading, uses REB membranes.

C6 H12 O6  –> 3 CO2  + 3 CH4 

This mix can not be put in the normal pipeline: there is too much CO2  and there are too many other smelly or condensible compounds (water, methanol, H2S…). This gas is sometimes used for heat on site, but there is a limited need for heat near a landfill. For the most part it is just vented or flared off. The waste of a potential energy source is an embarrassment. Besides, we are beginning to notice that methane causes global-warming with about 50 times the effect of CO2, so there is a strong incentive to capture and burn this gas, even if you have no use for the heat. I’d like to suggest a way to use the gas.

We sell small membrane modules too.

The landfill gas can be upgraded by removing the CO2. This can be done via a membrane, and REB Research sells a membranes that can do this. Other companies have other membranes that can do this too, but ours are smaller, and more suitable to small operations in my opinion. Our membrane are silicone-based. They retain CH4 and CO and hydrogen, while extracting water, CO2 and H2S, see schematic. The remainder is suited for local use in power generation, or in methanol production. It can also be used to run trucks. Also the gas can be upgraded further and added to a pipeline for shipping elsewhere. The useless parts can be separated for burial. Find these membranes on the REB web-site under silicone membranes.

Garbage trucks in New York powered by natural gas. They could use landfill gas.

There is another gas source whose composition is nearly identical to that of landfill gas; it’s digester gas, the output of sewage digesters. I’ve written about sewage treatment mostly in terms of aerobic bio treatment, for example here, but sewage can be treated anaerobically too, and the product is virtually identical to landfill gas. I think it would be great to power garbage trucks and buses with this. Gas. In New York, currently, some garbage trucks are powered by natural gas.

As a bonus, here’s how to make methanol from partially upgraded landfill or digester gas. As a first step 2/3 of the the CO2 removed. The remained will convert to methanol. by the following overall chemistry:

3 CH4 + CO2 + 2 H2O –> 4 CH3OH. 

When you removed the CO2., likely most of the water will leave with it. You add back the water as steam and heat to 800°C over Ni catalyst to make CO and H2. That’s done at about 800°C and 200 psi. Next, at lower temperature, with an appropriate catalyst you recombine the CO and H2 into methanol; with other catalysts you can make gasoline. These are not trivial processes, but they are doable on a smallish scale, and make economic sense where the methane is essentially free and there is no CNG customer. Methanol sells for $1.65/gal when sold by the tanker full, but $5 to $10/gal at the hardware store. That’s far higher than the price of methane, and methanol is far easier to ship and sell in truckload quantities.

Robert Buxbaum, June 8, 2021

Are fewer people better?

Part of the push to help the oppressed and save the plant is push to decrease the birthrate both in the developed and undeveloped world. Putting of childbirth is supposed to lead to a more meaningful life, while academic excellence is considered meaningful. Child-raising is considered male oppression of women, while writing mediocre poetry is, we’re told elevating, it’s finding your voice. It’s the new mood, at least in the developed world.

In the undeveloped world, political activism and wealth accumulation are presented as more meaningful, and fewer children is presented as a responsible route to wealth and happiness (see Indian advertisement below). My sense is otherwise, that children bring happiness and long term wealth. My sense is that the best two ways to change the world for the better is to work on yourself and to raise good children. And these Idas are connected; children are little mirrors, sometimes showing hidden flaws, sometimes revealing enthusiasm and greatnesses.

This month’s cover article of National Geographic includes economic justifications for fewer children and ecological justifications. Apparently we’re making life difficult for the polar bears. The assumption is that the bears like it cold, and their opinion is more important than that of animals that like it warm, like most humans.

There is also an assumption that there will be more jobs and better food if we have fewer children, or that people will be happier. Who are the “we” who are better off. I personally would not trade a billion randomly selected lives to lower the earth’s temperature 1 degree, or for the supposed happiness benefit of 1 million empty-nest households.

Robert Buxbaum, April 18, 2021. I like people more than polar bears, sue me.

is a colder world better.

For the last several years it has been claimed that some 98% of legitimate scientists believe it is a major need to reduce CO2 output so as to stop the world from getting warmer. When Trump visited the pope 4 yers ago, the pope would not speak to him expect to hand him his anti-global warming letter he’d written, “Laudato Si” and to tell Trump to get on board to stop global warming. Trump said he would read the letter.

Trump visits the pope, and the pope does not look happy

I’m not a fan of science established by Papal dictate based on an informal poll of experts, especially here where the minority includes some of the greatest minds of the 20th century, and the poll is taken by Al Gore’s science expert, but that’s where we are when it comes to science and politics. I also find it that the pope blames the US for global warming but not China when the the majority of CO2 came from China, a country committed to increasing its use of coal. But be this as it may be — the pope doesn’t blame China for imprisoning Catholics either, most recently the editor of Hong Kong’s most widely read newspaper.

So I thought I take a step back to look at the desirability of making the world colder. Is a colder world a better world? Sad pictures of polar bears are presented in favor of the colder world, but for all I know, polar bears prefer it warm. Their numbers are increasing.

Paul McCarthy lyrics; Hey Jude.

If we had a global climate adjustment knob somewhere, a magic knob allowing you to make the world warmer or colder by turning it right, or left, I doubt the consensus would be to turn the knob left. There is no real logic to cold being good, but there is a line in “Hey Jude”: “…It’s a fool who plays it cool, by making his world a little colder.” And Svente Arrhenius, one of the great scientists of 100 years ago, said he preferred a warm earth to a cold one to avoid disease and starvation. When the climate turns colder, the result is disease and famine as crops fail and animals freeze. It’s not an option that I’d think most people would prefer. given my choice, I would prefer things a little warmer.

I should also note that our ability to fine tune the climate is not what we’d think. The world climate is chaotic, and there is no reliable knob. Historically, the most common setting is ice-age, and that’s a setting that most people really don’t like.

Robert Buxbaum, February 20, 2021.

Eight ways to not fix the tower of Pisa, and one that worked.

You may know that engineers recently succeed in decreasing the tilt of the “leaning” tower of Pizza by about 1.5°, changing it from about 5.5° to about to precisely 3.98° today –high precision given that the angle varies with the season. But you may not know how that there were at least eight other engineering attempts, and most of these did nothing or made things worse. Neither is it 100% clear that current solution didn’t make things worse. What follows is my effort to learn from the failures and successes, and to speculate on the future. The original-tilted tower is something of an engineering marvel, a highly tilted, stone on stone building that has outlasted earthquakes and weathering that toppled many younger buildings that were built straight vertical, most recently the 1989 collapse of the tower of Pavia. Part of any analysis, must also speak to why this tower survived so long when others failed.

First some basics. The tower of Pisa is an 8 story bell tower for the cathedral next door. It was likely designed by engineer Bonanno Pisano who started construction in 1173. We think it’s Pisano, because he put his name on an inscription on the base, “I, who without doubt have erected this marvelous work that is above all others, am the citizen of Pisa by the name of Bonanno.” Not so humble then, more humble when the tower started to lean, I suspect. The outer diameter at the base is 15.5 m and the weight of the finished tower is 14.7 million kg, 144 million Nt. The pressure exerted on the soil is 0.76 MPa (110 psi). By basic civil engineering, it should stand straight like the walls of the cathedral.

Bonanno’s marvelous work started to sink into the soil of Pisa almost immediately, though. Then it began to tilt. The name Pisa, in Greek, means swamp, and construction, it seems, was not quite on soil, but mud. When construction began the base was likely some 2.5 m (8 feet) above sea level. While a foundation of clay, sand and sea-shells could likely have withstood the weight of the tower, the mud below could not. Pisano added length to the south columns to keep the floors somewhat level, but after three floors were complete, and the tilt continued, he stopped construction. What to do now? What would you do?

If it were me, I’d consider widening the base to distribute the force better, and perhaps add weight to the north side. Instead, Pisano gave up. He completed the third level and went to do other things. The tower stood this way for 99 years, a three-floor, non-functional stub. 

About 1272, another engineer, Giovanni di Simone, was charged with fixing the situation. His was the first fix, and it sort-of worked. He strengthened the stonework of the three original floors, widened the base so it wold distribute pressure better, and buried the base too. He then added three more floors. The tower still leaned, but not as fast. De Simone made the south-side columns slightly taller than the north to hide the tilt and allow the floors to be sort-of level. A final two stories were added about 1372, and then the first of the bells. The tower looked as it does today when Gallileo did his famous experiments, dropping balls of different size from the south of the 7th floor between 1589 and 1592.

Fortunately for the construction, the world was getting colder and the water table was dropping. While dry soil is stronger than wet, wet soil is more plastic. I suspect it was the wet soil that helped the tower survive earthquakes that toppled other, straight towers. It seems that the tilt not only slowed during this period but briefly reversed, perhaps because of the shift in center of mass, or because of changes in the sea level. Shown below is 1800 years of gauge-based sea-level measurements. Other measures give different sea-level histories, but it seems clear that man-made climate change is not the primary cause. Sea levels would continue to fall till about 1750. By 1820 the tilt had resumed and had reached 4.5°.

Sea level height history as measured by land gauges. Because of climate change (non man-made) the sea levels rise and fall. This seems to have affected the tilt of the tower. Other measures of water table height give slightly different histories, but still the sense that man change is not the main effect.

The 2nd attempt was begun in 1838. Architect, Alessandro Della Gherardesca got permission to dig around the base at the north to show off the carvings and help right the tower. Unfortunately, the tower base had sunk below the water table. Further, it seems the dirt at the base was helping keep the tower from falling. As Della Gherardesca‘s crew dug, water came spurting out of the ground and the tower tilted another few inches south. The dig was stopped and filled in, but he dig uncovered the Pisano inscription, mentioned above. What would you do now? I might go away, and that’s what was done.

The next attempt to fix the tower (fix 3) was by that self-proclaimed engineering genius, Benito Mussolini. In 1934. Mussolini had his engineers pump some 200 tons of concrete into the south of the tower base hoping to push the tower vertical and stabilize it. The result was that the tower lurched another few inches south. The project was stopped. An engineering lesson: liquids don’t make for good foundations, even when it’s liquid concrete. An unfortunate part of the lesson is that years later engineers would try to fix the tower by pumping water beneath the north end. But that’s getting ahead of myself. Perhaps Mussolini should have made tests on a model before working on the historic tower. Ditto for the more recent version.

On March 18, 1989 the Civic Tower of Pavia started shedding bricks for no obvious reason. This was a vertical tower of the same age and approximate height as the Pisa tower. It collapsed killing four people and injuring 15. No official cause has been reported. I’m going to speculate that the cause was mechanical fatigue and crumbling of the sort that I’ve noticed on the chimney of my own house. Small vibrations of the chimney cause bits of brick to be ejected. If I don’t fix it soon, my chimney will collapse. The wet soils of Pisa may have reduced the vibration damage, or perhaps the stones of Pisa were more elastic. I’ve noticed brick and stone flaking on many prominent buildings, particularly at joins in the chimney.

John Burland’s team cam up with many of the fixes here. They are all science-based, but most of the fixes made things worse.

In 1990, a committee of science and engineering experts was formed to decide upon a fix for the tower of Pisa. It was headed by Professor John Burland, CBE, DSc(Eng), FREng, FRS, NAE, FIC, FCGI. He was, at the time, chair of soil mechanics at the Imperial College, London, and had worked with Ove, Arup, and Partners. He had written many, well regarded articles, and had headed the geological aspects of the design of the Queen Elizabeth II conference center. He was, in a word, an expert, but this tower was different, in part because it was an, already standing, stone-on stone tower that the city wished should remain tilted. The tower was closed to visitors along with all businesses to the south. The bells were removed as well. This was a safety measure, and I don’t count it as a fix. It bought time to decide on a solution. This took two years of deliberation and meetings

In 1992, the committee agreed to fix no 4. The tower was braced with plastic-covered, steel cables that were attached around the second and third floors, with the cables running about 5° from the horizontal to anchor points several hundred meters to the north. The fix was horribly ugly, and messed with traffic. Perhaps the tilt was slowed, it was not stopped.

In 1993, fix number 5. This was the most exciting engineering solution to date: 600 tons of lead ingots were stacked around the base, and water was pumped beneath the north side. This was the reverse of the Mussolini’s failed solution, and the hope was that the tower would tilt north into the now-soggy soil. Unfortunately, the tower tilted further south. One of the columns cracked too, and this attempt was stopped. They were science experts, and it’s not clear why the solution didn’t work. My guess is that they pumped in the water too fast. This is likely the solution I would have proposed, though I hope I would have tested it with a scale model and would have pumped slower. Whatever. Another solution was proposed, this one even more exotic than the last.

For fix number 6, 1995, the team of experts, still overseen by Burland, decided to move the cables and add additional tension. The cables would run straight down from anchors in the base of the north side of the tower to ten underground steel anchors that were to be installed 40 meters below ground level. This would have been an invisible solution, but the anchor depth was well into the water table. So, to anchor the ground anchors, Burland’s team had liquid nitrogen injected into the ground beneath the tower, on the north side where the ground anchors were to go. What Burland did not seem to have realized is that water expands when it freezes, and if you freeze 40 meters of water the length change is significant. On the night of September 7, 1995, the tower lurched southwards by more than it had done in the entire previous year.  The team was summoned for an emergency meeting and the liquid nitrogen anchor plan was abandoned.

Tower with the two sets of lead ingots, 900 tons total, about the north side of the base. The weight of the tower is 14,700 tons.

Fix number 7: Another 300 tons of lead ingots were added to the north side as a temporary, simple fix. The fix seems to have worked stabilizing things while another approach was developed.

Fix number 8: In order to allow the removal of the ugly lead bricks another set of engineers were brought on, Roberto Cela and Michele Jamiolkowski. Using helical drills, they had holes drilled at an angle beneath the north side of the tower. Using hoses, they removed a gallon or two of dirt per day for eleven years. The effect of the lead and the dirt removal was to reduce the angle of the tower to 4.5°, the angle that had been measured in 1820. At this point the lead could be removed and tourists were allowed to re-enter. Even after the lead was removed, the angle continued to subside north. It’s now claimed to be 3.98°, and stable. This is remarkable precision for a curved tower whose tilt changes with the seasons. (An engineering joke: How may engineers does it take to change a lightbulb? 1.02).

The bells were replaced and all seemed good, but there was still the worry that the tower would start tilting again. Since water was clearly part of the problem, the British soils expert, Burland came up with fix number 9. He had a series of drainage tunnels built to keep the water from coming back. My worry is that this water removal will leave the tower vulnerable to earthquake and shedding damage, like with the Pavia tower and my chimney. We’ll have to wait for the next earthquake or windstorm to tell for sure. So far, this fix has done no harm.

Robert Buxbaum, October 9, 2020. It’s nice to learn from other folks mistakes, and embarrassments, as well as from their successes. It’s also nice to see how science really works, not with great experts providing the brilliant solution, but slowly, like stumbling in the dark. I see this with COVID-19.

James Croll, janitor scientist; man didn’t cause warming or ice age

When politicians say that 98% of published scientists agree that man is the cause of global warming you may wonder who the other scientists are. It’s been known at least since the mid 1800s that the world was getting warmer; that came up talking about the president’s “Resolute” desk, and the assumption was that the cause was coal. The first scientist to present an alternate theory was James Croll, a scientist who learned algebra only at 22, and got to mix with high-level scientists as the janitor at the Anderson College in Glasgow. I think he is probably right, though he got some details wrong, in my opinion.

James Croll was born in 1821 to a poor farming family in Scotland. He had an intense interest in science, but no opportunity for higher schooling. Instead he worked on the farm and at various jobs that allowed him to read, but he lacked a mathematics background and had no one to discuss science with. To learn formal algebra, he sat in the back of a class of younger students. Things would have pretty well ended there but he got a job as janitor for the Anderson College (Scotland), and had access to the library. As janitor, he could read journals, he could talk to scientists, and he came up with a theory of climate change that got a lot of novel things right. His idea was that there were  regular ice ages and warming periods that would follow in cycles. In his view these were a product of the precession of the equinox and the fact that the earth’s orbit was not round, but elliptical, with an eccentricity of 1.7%. We are 3.4% closer to the sun on January 3 than we are on July 4, but the precise dates changes slowly because of precession of the earth’s axis, otherwise known as precession of the equinox.

Currently, at the spring equinox, the sun is in “the house of Pisces“. This is to say, that a person who looks at the stars all the night of the spring equinox will be able to see all of the constellations of the zodiac except for the stars that represent Pisces (two fish). But the earth’s axes turns slowly, about 1 days worth of turn every 70 years, one rotation every 25,770 years. Some 1800 years ago, the sun would have been in the house of Ares, and 300 years from now, we will be “in the age of Aquarius.” In case you wondered what the song, “age of Aquarius” was about, it’s about the precession of the equinox.

Our current spot in the precession, according to Croll is favorable to warmth. Because we are close to the sun on January 3, our northern summers are less-warm than they would be otherwise, but longer; in the southern hemisphere summers are warmer but shorter (southern winters are short because of conservation of angular momentum). The net result, according to Croll should be a loss of ice at both poles, and slow warming of the earth. Cooling occurs, according to Croll, when the earth’s axis tilt is 90° off the major axis of the orbit ellipse, 6300 years before or after today. Similar to this, a decrease in the tilt of the earth would cause an ice age (see here for why). Earth tilt varies over a 42,000 year cycle, and it is now in the middle of a decrease. Croll’s argument is that it takes a real summer to melt the ice at the poles; if you don’t have much of a tilt, or if the tilt is at the wrong time, ice builds making the earth more reflective, and thus a little colder and iceier each year; ice extends south of Paris and Boston. Eventually precession and tilt reverses the cooling, producing alternating warm periods and ice ages. We are currently in a warm period.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

At the time Croll was coming up with this, it looked like numerology. Besides, most scientists doubted that ice ages happened in any regular pattern. We now know that ice ages do happen periodically and think that Croll must have been on to something. See figure; the earth’s temperature shows both a 42,000 year cycle and a 23,000 year cycle with ice ages coming every 100,000 years.

In the 1920s a Serbian Mathematician, geologist, astronomer, Milutin Milanković   proposed a new version of Croll’s theory that justified longer space between ice ages based on the beat frequency between a 23,000 year time for axis precession, and the 42,000 year time for axis tilt variation. Milanković used this revised precession time because the ellipse precesses, and thus the weather-related precession of the axis is 23,000 years instead of 25,770 years. The beat frequency is found as follows:

51,000 = 23,000 x 42,000 / (42000-23000).

As it happens neither Croll’s nor Milanković’s was accepted in their own lifetimes. Despite mounting evidence that there were regular ice ages, it was hard to believe that these small causes could produce such large effects. Then, in a 1976 study (Hayes, Imbrie, and Shackleton) demonstrated clear climate variations based on the mud composition from New York and Arizona. The variations followed all four of the Milankocitch cycles.

Southern hemisphere ice is growing, something that confounds CO2-centric experts

Southern hemisphere ice is growing, something that confounds CO2-centric experts

Further confirmation came from studying the antarctic ice, above. You can clearly see the 23,000 year cycle of precession, the 41,000 year cycle of tilt, the 51,000 year beat cycle, and also a 100,000 year cycle that appears to correspond to 100,000 year changes in the degree of elliptic-ness of the orbit. Our orbit goes from near circular to quite elliptic (6.8%) with a cycle time effectively of 100,000 years. It is currently 1.7% elliptic and decreasing fast. This, along with the decrease in earth tilt suggests that we are soon heading to an ice age. According to Croll, a highly eccentric orbit leads to warming because the minor access of the ellipse is reduced when the orbit is lengthened. We are now heading to a less-eccentric orbit; for more details go here; also for why the orbit changes and why there is precession.

We are currently near the end of a 7,000 year warm period. The one major thing that keeps maintaining this period seems to be that our precession is such that we are closest to the sun at nearly the winter solstice. In a few thousand years all the factors should point towards global cooling, and we should begin to see the glaciers advance. Already the antarctic ice is advancing year after year. We may come to appreciate the CO2 produced by cows and Chinese coal-burning as these may be all that hold off the coming ice age.

Robert Buxbaum, November 16, 2018.

Global warming’s 19 year pause

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Global temperatures measured from the antarctic ice shows stable chaos and self-similarity.

The global climate is, as best I can tell, chaotic with 100,000 year ice-age cycles punctuated by smaller cycles of 1000 years, 100 years, etc. On the ice-age time scale shown at left, the temperature rise of the last century looks insignificant and very welcome; warm seems better than cold in my eyes. But the press and academic community has focused on the evils of warmth — global warming. They point out that temperatures have risen 1 1/2 °C since the little ice age of the early 1600s, and that 1/2 °C of this has occurred since 1900. Al Gore won a Nobel prize for his assertion that the rate of rise had accelerated to 4°C per century — a “hockey-stick change” caused by industrial CO2. This change was expected to bring disaster by 2015: The arctic was supposed to be ice-free, and Manhattan was expected to sink. I’ve posted a “Good Morning America” clip from 2008 highlighting this “inconvenient truth”.

Our 19 1/2 year global warming pause; plot from Andrew Watts with Al Gore's prediction shown in red. During the time shown, the atmospheric CO2 content has gone up by about 25%, but the prediction has not come to pass.

Our 19 1/2 year global warming pause; plot from Andrew Watts with Al Gore’s prediction shown in red. So far, the prediction has not come to pass.

As it happens, not only hasn’t global warming accelerated, it seems to have paused. There have been no significant temperature changes since late 1997, as shown.  The main explanations are clouds and solar variation: variations that the Obama administration claims will end any day now. The problem, as I see it, is that climate is fundamentally chaotic, and thus unpredictable except on the very long, ice-age, timescale. It will thus always make fools of those who predict.

This is not to say that pollution is good, or that CO2 is, but it suggests our models and remedies are flawed. The CO2 content of the air has increased 25% over the past 19 years. It now mostly comes from China and India, countries that enthusiastically endorse having us reduce our output. My thinking is that lowering US production will, in no way, protect us from the dire predictions below.

Despite pressure from China and India, the US pulled out of the Paris climate accord last month. It now seems several other countries will pull out as well.

Robert Buxbaum, July 27, 2017. I’ve also written about how the global warming of the mid 1800s lead us to have the president’s Resolute desk.

Global warming and the president’s Resolute desk

In the summer of 2016, the Crystal Serenity, a cruse ship passed through the Northwest passage, going from the Pacific to the Atlantic above the Canadian arctic circle. It was a first for a cruise ship, but the first time any modern ship made the passage, it was 162 years ago, and the ship was wooden and unmanned. It was the British Resolute; wood from that ship was used to make the President’s main desk — one used by the last four presidents. And thereby hangs a tale of good global warming, IMHO.

President Trump meets with college presidents at the Resolute desk. Originally the front had portraits of Queen Victoria and President Hayes. Those are gone; the eagle on the front is an addition, as is the bottom stand.

President Trump meets with college presidents at the Resolute desk. Originally the front had portraits of Queen Victoria and President Hayes. Those are gone; the eagle on the front is an addition, as is the bottom stand. The desk is now 2″ taller than originally. 

The world today is warmer than it was in 1900. But, what is not generally appreciated is that, in 1900 the world was warmer than In 1800; that in 1800 it was warmer than in 1700; and that, in 1640, it was so cold there were regular fairs on the frozen river Themes. By the 1840s there were enough reports of global warming that folks in England thought the northwest passage might have opened at last. In 1845 the British sent two ships, the Erebus and the Terror into the Canadian Arctic looking for the passage. They didn’t make it. They and their crews were lost and not seen again until 2014. In hopes of finding them though, the US and Britain sent other ships, including the Resolute under the command of captain Edward Belcher.

The Resolute was specially made to withstand the pressure of ice. Like the previous ships, and the modern cruise ship, it entered the passage from the Pacific during the peak summer thaw. Like the ships before, the Resolute and a partner ship got stuck in the ice — ice that was not quite stationary, but nearly so, The ships continued to move with the ice, but at an unbearably slow pace. After a year and a half captain Belcher had moved a few hundred miles, but had had enough. He abandoned his ships and walked out of Canada to face courts martial in England (English captains were supposed to “go down with the ship”). Belcher was acquitted; the ice continued to move, and the ships moved with it. One ship sank, but the Resolute, apparently unscathed, passed through to the Atlantic. Without captain or crew, she was the first ship in recorded history to make the passage, something that would not happen again till the Nautilus nuclear submarine did it under the ice, 100 years later.

 

The ghost ship Resolute was found in September 1855, five years after she set sail, by captain Buddington of the American whaler, George Henry. She was floating, unmanned, 1200 miles from where captain Belcher had left her. And according to the law of the sea, she belonged to Buddington and his crew to use as they saw fit. But the US was inching to war with Britain, an outgrowth of the Crimean war and seized Russo-American property. Franklin Pierce thought it would help to return the ship as a sign of friendship — to break the ice, as it were. A proposal for funds was presented to congress and passed; the ship was bought, towed to the Brooklyn Navy yard for refitting, and returned to Britain as a gift. The gift may have worked: war with Britain was averted, and the seized property was returned. Then again, Britain went on to supply the confederacy early in the Civil War. None-the-less, it was a notable ship, and a notable gift, and when it was broken up, Parliament decided to have two “friendship desks” made of its timbers. One desk was presented to President Hayes, the other to Queen Victoria. One of these desks sits the British Naval museum at Portsmouth; its American cousin serves Donald Trump in the Oval office as it has served many president before him. It has been used by Coolidge, Kennedy, Carter, Reagan, Clinton, Bush II, and Obama before him — a reminder that global warming can be good, in both senses. If you are interested in the other presidents’ desks, I wrote a review of them here.

As for the reason for the global warming of the mid 1800s, It seems that climate is chaotic. ON a related note, I have proposed that we make a more-permanent northwest passage by cutting thorough one of the islands in northern Canada. If you want to travel the Northwest passage in 2017, there is another cruise scheduled, but passage is sold out.

Robert Buxbaum, March 16, 2017.

18 year pause in global warming

Here is an updated version of the climate change graph. It’s now 18+ years, and as was true with last year’s version, 17+ years of no climate change, I see no significant climate change. Similar to this: Global Warming takes a 15 year rest.

18 years of Global Temperature anomaly to July 2015

18+ years of Global Temperature anomaly to July 2015. The climate seems to have stopped changing.

Though the average planetary temperature has remained constant, there is local variation. It’s been warm in California for the past 2+ years, but cold in Michigan. Before that, it was warm in Michigan and California was cold. The Antarctic ice is at record high levels while the arctic ice has shrunk enough that we should make a Northwest passage.

Climate vs weather from the blog of Steven Goddard

Climate vs weather, from the blog of Steven Goddard. It’s funny because…

Theory suggests we should see global warming because of increased CO2 trapping of atmospheric heat 2 miles up or so. The problem with the theory is that it doesn’t include clouds. A few extra clouds, e.g. from Chinese industry, could have more cooling power than a lot of CO2 has heating power. It seems that the effects cancel, and temperature 2-3 miles up is about what you’d expect from entropy.

My biggest climate fear, BTW, is global cooling: a new ice age. They come every 110,000 years or so and we seem overdue.

Global temperatures measured from the antarctic ice showing stable, cyclic chaos and self-similarity.

Global temperatures from the antarctic ice show ice ages every 110,000 years. cyclic chaos and self-similarity.

Robert Buxbaum, July 22, 2015. You may not have noticed, but there have been relatively few hurricanes — something that could change at any minute. Here’s a link to 1/2 hour lecture by a Nobel physicist, Ivar Giaever on the subject. Like me, he notices no change, and thinks warmer is better.