Tag Archives: gravity

Dark matter: why our galaxy still has its arms

Our galaxy may have two arms, or perhaps four. It was thought to be four until 2008, when it was reduced to two. Then, in 2015, it was expanded again to four arms, but recent research suggests it’s only two again. About 70% of galaxies have arms, easily counted from the outside, as in the picture below. Apparently it’s hard to get a good view from the inside.

Four armed, spiral galaxy, NGC 2008. There is a debate over whether our galaxy looks like this, or if there are only two arms. Over 70% of all galaxies are spiral galaxies. 

Logically speaking, we should not expect a galaxy to have arms at all. For a galaxy to have arms, it must rotate as a unit. Otherwise, even if the galaxy had arms when it formed, it would lose them by the time the outer rim rotated even once. As it happens we know the speed of rotation and age of galaxies; they’ve all rotated 10 to 50 times since they formed.

For stable rotation, the rotational acceleration must match the force of gravity and this should decrease with distances from the massive center. Thus, we’d expect that the stars should circle much faster the closer they are to the center of the galaxy. We see that Mercury circles the sun much faster than we do, and that we circle much faster than the outer planets. If stars circled the galactic core this way, any arm structure would be long gone. We see that the galactic arms are stable, and to explain it, we’ve proposed the existence of lots of unseen, dark matter. This matter has to have some peculiar properties, behaving as a light gas that doesn’t spin with the rest of the galaxy, or absorb light, or reflect. Some years ago, I came to believe that there was only one gas distribution that fit, and challenged folks to figure out the distribution.

The mass of the particles that made up this gas has to be very light, about 10-7 eV, about 2 x 1012 lighter than an electron, and very slippery. Some researchers had posited large, dark rocks, but I preferred to imagine a particle called the axion, and I expected it would be found soon. The particle mass had to be about this or it would shrink down to the center of he galaxy or start to spin, or fill the universe. Ina ny of these cases, galaxies would not be stable. The problem is, we’ve been looking for years, and not only have we not seen any particle like this. What’s more, continued work on the structure of matter suggests that no such particle should exist. At this point, galactic stability is a bigger mystery than it was 40 years ago.;

So how to explain galactic stability if there is no axion. One thought, from Mordechai Milgrom, is that gravity does not work as we thought. This is an annoying explanation: it involves a complex revision of General Relativity, a beautiful theory that seems to be generally valid. Another, more recent explanation is that the dark matter is regular matter that somehow became an entangled, super fluid despite the low density and relatively warm temperatures of interstellar space. This has been proposed by Justin Khoury, here. Either theory would explain the slipperiness, and the fact that the gas does not interact with light, but the details don’t quite work. For one, I’d still think that the entangled particle mass would have to be quite light; maybe a neutrino would fit (entangled neutrinos?). Super fluids don’t usually exist at space temperatures and pressures, and long distances (light years) should preclude entanglements, and neutrinos don’t seem to interact at all.

Sabine Hossenfelder suggests a combination of modified gravity and superfluidity. Some version of this might fit observations better, but doubles the amount of new physics required. Sabine does a good science video blog, BTW, with humor and less math. She doesn’t believe in Free will or religion, or entropy. By her, the Big Bang was caused by a mystery particle called an inflateon that creates mass and energy from nothing. She claims that the worst thing you can do in terms of resource depletion is have children, and seems to believe religious education is child abuse. Some of her views I agree with, with many, I do not. I think entropy is fundamental, and think people are good. Also, I see no advantage in saying “In the beginning an inflateon created the heavens and the earth”, but there you go. It’s not like I know what dark matter is any better than she does.

There are some 200 billion galaxies, generally with 100 billion stars. Our galaxy is about 150,000 light years across, 1.5 x 1018 km. It appears to behave, more or less, as a solid disk having rotated about 15 full turns since its formation, 10 billion years ago. The speed at the edge is thus about π x 1.5 x 1018 km/ 3 x 1016 s = 160km/s. That’s not relativistic, but is 16 times the speed of our fastest rockets. The vast majority of the mass of our galaxy would have to be dark matter, with relatively little between galaxies. Go figure.

Robert Buxbaum, May 24, 2023. I’m a chemical engineer, PhD, but studied some physics and philosophy.

A simple, classical view of and into black holes

Black holes are regions of the universe where gravity is so strong that light can not emerge. And, since the motion of light is related to the fundamental structure of space and time, they must also be regions where space curves on itself, and where time appears to stop — at least as seen by us, from outside the black hole. But what does space-time look like inside the black hole.

NASA's semi-useless depiction of a black hole -- one they created for educators. I'm not sure what you're supposed to understand from this.

NASA’s semi-useless depiction of a black hole — one they created for educators. Though it’s sort of true, I’m not sure what you’re supposed to understand from this. I hope to present a better version.

From our outside perspective, an object tossed into a black hole will appear to move slower as it approaches the hole, and at the hole horizon it will appear to have stopped. From the inside of the hole, the object appears to just fall right in. Some claim that tidal force will rip it apart, but I think that’s a mistake. Here’s a simple, classical way to calculate the size of a black hole, and to understand why things look like they do and do what they do.

Lets begin with light, and accept, for now, that light travels in particle form. We call these particles photons; they have both an energy and a mass, and mostly move in straight lines. The energy of a photon is related to its frequency by way of Plank’s constant. E = hν, where E is the photon energy, h is Plank’s constant and ν is frequency. The photon mass is related to its energy by way of the formula m=E/c2, a formula that is surprisingly easy to derive, and often shown as E= mc2. The version that’s relevant to photons and black holes is:

m =  hν/c2.

Now consider that gravity affects ν by affecting the energy of the photon. As a photon goes up, the energy and frequency goes down as energy is lost. The gravitational force between a star, mass M, and this photon, mass m, is described as follows:

F = -GMm/r2

where F is force, G is the gravitational constant, and r is the distance of the photon from the center of the star and M is the mass of the star. The amount of photon energy lost to gravity as it rises from the surface is the integral of the force.

∆E = – ∫Fdr = ∫GMm/r2 dr = -GMm/r

Lets consider a photon of original energy E° and original mass m°= E°/c2. If ∆E = m°c2, all the energy of the original photon is lost and the photon disappears. Now, lets figure out the height, r° such that all of the original energy, E° is lost in rising away from the center of a star, mass M. That is let calculate the r for which ∆E = -E°. We’ll assume, for now, that the photon mass remains constant at m°.

E° = GMm°/r° = GME°/c2r°.

We now eliminate E° from the equation and solve for this special radius, r°:

r° =  GM/c2.

This would be the radius of a black hole if space didn’t curve and if the mass of the photon didn’t decrease as it rose. While neither of these assumptions is true, the errors nearly cancel, and the true value for r° is double the size calculated this way.

r° = 2GM/c2

r° = 2.95 km (M/Msun).

schwarzschild

Karl Schwarzschild 1873-1916.

The first person to do this calculation was Karl Schwarzschild and r° is called the Schwarzschild radius. This is the minimal radius for a star of mass M to produce closed space-time; a black hole. Msun is the mass of our sun, sol, 2 × 1030 kg.  To make a black hole one would have to compress the mass of our sun into a ball of 2.95 km radius, about the size of a small asteroid. Space-time would close around it, and light starting from the surface would not be able to escape.

As it happens, our sun is far bigger than an asteroid and is not a black hole: we can see light from the sun’s surface with minimal space-time deformation (there is some seen in the orbit of Mercury). Still, if the mass were a lot bigger, the radius would be a lot bigger and the density would be less. Consider a black hole the same mass as our galaxy, about 1 x1012 solar masses, or 2 x 1042  kg. This number is ten times what you might expect since our galaxy is 90% dark matter. The Schwarzschild radius with the mass of our galaxy would be 3 x 1012 km, or 0.3 light years. That’s far bigger than our solar system, and about 1/20 the distance to the nearest star, Alpha Centauri. This is a very big black hole, though it is far smaller than our galaxy, 5 x 1017 km, or 50,000 light years. The density, though is not all that high.

Now let’s consider a black hole comprising 15 billion galaxies, the mass of the known universe. The folks at Cornell estimate the sum of dark and luminous matter in the universe to be 3 x 1052 kg, about 15 billion times the mass of our galaxy. This does not include the mass hidden in the form of dark energy, but no one’s sure what dark energy is, or even if it really exists. A black hole encompassing this, known mass would have a Schwarzschild radius about 4.5 billion light years, or about 1/3 the actual size of the universe when size is calculated based on its Hubble-constant age, 14 billion years. The universe may be 2-3 times bigger than this on the inside because space is curved and, rather like Dr. Who’s Tardis it’s bigger on the inside, but in astronomical terms a factor of 3 or 10 is nothing: the actual size of the known universe is remarkably similar to its Schwarzschild radius, and this is without considering the mass its dark energy must have if it exists.

Standard picture of the big bang theory. Dark energy causes the latter-stage expansion.

Standard picture of the big bang theory. Dark energy causes the latter-stage expansion.

The evidence for dark energy is that the universe is expanding faster and faster instead of slowing. See figure. There is no visible reason for the acceleration, but it’s there. The source of the energy might be some zero-point effect, but wherever it comes from, the significant amount of energy must have significant mass, E = mc2. If the mass of this energy is 3 to 10 times the physical mass, as seems possible, we are living inside a large black hole, something many physicists, including Einstein considered extremely likely and aesthetically pleasing. Einstein originally didn’t consider the possibility that the hole could be expanding, but a reviewer of one of his articles convinced him it was possible.

Based on the above, we now know how to calculate the size of a black hole of any mass, and we now know what a black hole the size of the universe would look like from the inside. It looks just like home. Wait for further posts on curved space-time. For some reason, no religion seems to embrace science’s 14 billion year old, black-hole universe (expanding or not). As for the tidal forces around black holes, they are horrific only for the small black holes that most people write about. If the black hole is big, the tidal forces are small.

 Dr. µß Buxbaum Nov 17, 2014. The idea for this post came from an essay by Isaac Asimov that I read in a collection called “Buy Jupiter.” You can drink to the Schwarzchild radius with my new R° cocktail.

Do antimatter apples fall up?

by Dr. Robert E. Buxbaum,

The normal view of antimatter is that it’s just regular matter moving backwards in time. This view helps explain why antimatter has the same mass as regular matter, but has the opposite charge, spin, etc. An antiproton has the same mass as a proton because it is a proton. In our (forward) time-frame the anti-proton appears to be attracted by a positive plate and repelled by a negative one because, when you are going backward in time, attraction looks like repulsion.

In this view, the reason that antimatter particles annihilate when they come into contact with matter –sometimes– is that the annihilation is nothing more than the matter particle (or antimatter) switching direction in time. In our (forward) time-frame it looks like two particles met and both disappeared leaving nothing but photons (light). But in the time reversal view, shown in the figure below, there is only one normal matter particle. In the figure, this particle (solid line) comes from the left, and meets a photon, a wiggly line who’s arrow shows it traveling backwards in time. The normal proton then reverses in time, giving off a photon, another wiggly line. I’d alluded to this in my recent joke about an antimatter person at a bar, but there is also a famous poem.

proton-antiproton

This time reverse approach is best tested using entropy, the classical “arrow of time.” The best way to tell you can tell you are going forward in time is to drop an ice-cube into a hot cup of coffee and produce a warm cup of diluted coffee. This really only shows that you and the cup are moving in the same direction — both forward or both backward, something we’ll call forward. If you were moving in the opposite direction in time, e.g. you had a cup of anti-coffee that was moving backward in time relative to you, you could pull an anti -ice cube out of it, and produce a steaming cup of stronger anti-coffee.

We can not do the entropy test of time direction yet because it requires too much anti matter, but we can use another approach to test the time-reverse idea: gravity. You can make a very small drop of antimatter using only a few hundred atoms. If the antimatter drop is really going backwards in time, it should not fall on the floor and splatter, but should fly upward off the floor and coalesce. The Laboratory at CERN has just recently started producing enough atoms of anti-hydrogen to allow this test. So far the atoms are too hot but sometime in 2014 they expect to cool the atoms, some 300 atoms of anti hydrogen, into a drop or two. They will then see if the drop falls down or up in gravity. The temperature necessary for this study is about 1/100,000 of a degree K.

The anti-time view of antimatter is still somewhat controversial. For it to work, light must reside outside of time, or must move forward and backward in time with some ease. This makes some sense since light travels “at the speed of light,” and is thus outside of time. In the figure, the backwards moving photon would look like a forward on moving in the other direction (left). In a future post I hope to give instructions for building a simple, quantum time machine that uses the fact that light can move backwards in time to produce an event eraser — a device that erases light events in the present. It’s a somewhat useful device, if only for a science fair demonstration. Making one to work on matter would be much harder, and may be impossible if the CERN experiments don’t work out.

It becomes a little confusing how to deal with entropy in a completely anti-time world, and it’s somewhat hard to see why, in this view of time, there should be so little antimatter in the universe and so much matter: you’d expect equal amounts of both. As I have strong feelings for entropy, I’d posted a thought explanation for this some months ago imagining anti matter as normal forward-time matter, and posits the existence of an undiscovered particle that interacts with its magnetism to make matter more stable than antimatter. To see how it works, recall the brainteaser about a tribe that always speaks lies and another that always speaks truth. (I’m not the first to think of this explanation).

If the anti hydrogen drop at CERN is seen to fall upwards, but entropy still works in the positive direction as in my post (i.e. drops still splatter, and anti coffee cools like normal coffee), it will support a simple explanation for dark energy — the force that prevents the universe from collapsing. Dark energy could be seen to result from the antigravity of antimatter. There would have to be large collections of antimatter somewhere, perhaps anti-galaxies isolated from normal galaxies, that would push away the positive matter galaxies while moving forward in time and entropy. If the antigalaxies were close to normal galaxies they would annihilate at the edges, and we’d see lots of photons, like in the poem. Whatever they find at CERN, the future will be interesting. And if time travel turns out to be the norm, the past will be more interesting than it was.

Joke about antimatter and time travel

I’m sorry we don’t serve antimatter men here.

Antimatter man walks into a bar.

Is funny because … in quantum-physics there is no directionality in time. Thus an electron can change directions in time and then appears to the observer as a positron, an anti electron that has the same mass as a normal electron but the opposite charge and an opposite spin, etc. In physics, the reason electrons and positrons appear to annihilate is that it’s there was only one electron to begin with. That electron started going backwards in time so it disappeared in our forward-in-time time-frame.

The thing is, time is quite apparent on a macroscopic scales. It’s one of the most apparent aspects of macroscopic existence. Perhaps the clearest proof that time is flowing in one direction only is entropy. In normal life, you can drop a glass and watch it break whenever you like, but you can not drop shards and expect to get a complete glass. Similarly, you know you are moving forward in time if you can drop an ice cube into a hot cup of coffee and make it luke-warm. If you can reach into a cup of luke-warm coffee and extract an ice cube to make it hot, you’re moving backwards in time.

It’s also possible that gravity proves that time is moving forward. If an anti apple is just a normal apple that is moving backwards in time, then I should expect that, when I drop an anti-apple, I will find it floats upward. On the other hand, if mass is inherently a warpage of space-time, it should fall down. Perhaps when we understand gravity we will also understand how quantum physics meets the real world of entropy.