Tag Archives: hydrogen

The hydrogen jerrycan

Here’s a simple invention, one I’ve worked on off-and-on for years, but never quite built. I plan to work on it more this summer, and may finally build a prototype: it’s a hydrogen Jerry can. The need to me is terrifically obvious, but the product does not exist yet.

To get a view of the need, imagine that it’s 5-10 years in the future and you own a hydrogen, fuel cell car. You’ve run out of gas on a road somewhere, per haps a mile or two from the nearest filling station, perhaps more. You make a call to the AAA road-side service and they show up with enough hydrogen to get you to the next filling station. Tell me, how much hydrogen did they bring? 1 kg, 2 kg, 5 kg? What did the container look like? Is there one like it in your garage?

The original, German "Jerry" can. It was designed at the beginning of WWII to help the Germans to overrun Europe.

The original, German “Jerry” can. It was designed at the beginning of WWII to help the Germans to overrun Europe. I imagine the hydrogen version will be red and roughly these dimensions, though not quite this shape.

I figure that, in 5-10 years these hydrogen containers will be so common that everyone with a fuel cell car will have one, somewhere. I’m pretty confident too that hydrogen cars are coming soon. Hydrogen is not a total replacement for gasoline, but hydrogen energy provides big advantages in combination with batteries. It really adds to automotive range at minimal cost. Perhaps, of course this is wishful thinking as my company makes hydrogen generators. Still it seems worthwhile to design this important component of the hydrogen economy.

I have a mental picture of what the hydrogen delivery container might look like based on the “Jerry can” that the Germans (Jerrys) developed to hold gasoline –part of their planning for WWII. The story of our reverse engineering of it is worth reading. While the original can was green for camouflage, modern versions are red to indicate flammable, and I imagine the hydrogen Jerry will be red too. It must be reasonably cheap, but not too cheap, as safety will be a key issue. A can that costs $100 or so does not seem excessive. I imagine the hydrogen Jerry can will be roughly rectangular like the original so it doesn’t roll about in the trunk of a car, and so you can stack a few in your garage, or carry them conveniently. Some folks will want to carry an extra supply if they go on a long camping trip. As high-pressure tanks are cylindrical, I imagine the hydrogen-jerry to be composed of two cylinders, 6 1/2″ in diameter about. To make the rectangular shape, I imagine the cylinders attached like the double pack of a scuba diver. To match the dimensions of the original, the cylinders will be 14″ to 20″ tall.

I imagine that the hydrogen Jerry can will have at least two spouts. One spout so it can be filled from a standard hydrogen dispenser, and one so it can be used to fill your car. I suspect there may be an over-pressure relief port as well, for safety. The can can’t be too heavy, no more than 33 lbs, 15 kg when full so one person can handle it. To keep the cost and weight down, I imagine the product will be made of marangeing steel wrapped in kevlar or carbon fiber. A 20 kg container made of these materials will hold 1.5 to 2 kg of hydrogen, the equivalent of 2 gallons of gasoline.

I imagine that the can will have at least one handle, likely two. The original can had three handles, but this seems excessive to me. The connection tube between two short cylinders could be designed to serve as one of the handles. For safety, the Jerrycan should have a secure over-seal on both of the fill-ports, ideally with a safety pin latch minimize trouble in a crash. All the parts, including the over- seal and pin, should be attached to the can so that they are not easily lost. Do you agree? What else, if anything, do you imagine?

Robert Buxbaum, February 26, 2017. My company, REB Research, makes hydrogen generators and purifiers.

A very clever hydrogen pump

I’d like to describe a most clever hydrogen pump. I didn’t invent it, but it’s awfully cool. I did try to buy one from “H2 Pump,” a company that is now defunct, and I tried to make one. Perhaps I’ll try again. Here is a diagram.

Electrolytic membrane H2 pump

Electrolytic membrane H2 pump

This pump works as the reverse of of a PEM fuel cell. Hydrogen gas is on both sides of a platinum-coated, proton-conducting membrane — a fuel cell membrane. As in a PEM fuel cell, the platinum splits the hydrogen molecules into H atoms. An electrode removes electrons to form H+ ions on one side of the membrane; the electrons are on the other side of the membrane (the membrane itself is chosen to not conduct electricity). The difference from the fuel cell is that, for the pump you apply a energy (voltage) to drive hydrogen across the membrane, to a higher pressure side; in a fuel cell, the hydrogen goes on its own to form water, and you extract electric energy.

As shown, the design is amazingly simple and efficient. There are no moving parts except for the hydrogen itself. Not only do you pump hydrogen, but you can purify it as well, as most impurities (nitrogen, CO2) will not go through the membrane. Water does permeate the membrane, but for many applications, this isn’t a major impurity. The amount of hydrogen transferred per plate, per Amp-second of current is given by Faraday’s law, an equation that also shows up in my discussion of electrolysis, and of electroplating,

C= zFn.

Here, C is the current in Amp-seconds, z is the number or electrons transferred per molecule, in this case 2, F is Faraday’s constant, 96,800, n is the number of mols transferred.  If only one plate is used, you need 96,800 Amp-seconds per gram of hydrogen, 53.8 Amp hours per mol. Most membranes can operate at well at 1.5 Amp per cm2, suggesting that a 1.1 square-foot membrane (1000 cm2) will move about 1 mol per minute, 22.4 slpm. To reduce the current requirement, though not the membrane area requirement, one typically stacks the membranes. A 100 membrane stack would take 16.1 Amps to pump 22.4 slpm — a very manageable current.

The amount of energy needed per mol is related to the pressure difference via the difference in Gibbs energy, ∆G, at the relevant temperature.

Energy needed per mol is, ideally = ∆G = RT ln Pu/Pd.

where R is the gas constant, 8.34 Joules per mol, T is the absolute temperature, Kelvins (298 for a room temperature process), ln is the natural log, and Pu/Pd is the ratio of the upstream and downstream pressure. We find that, to compress 2 grams of hydrogen (one mol or 22.4 liters) to 100 atm (1500 psi) from 1 atm you need only 11400 Watt seconds of energy (8.34 x 298 x 4.61= 11,400). This is .00317 kW-hrs. This energy costs only 0.03¢ at current electric prices, by far the cheapest power requirement to pump this much hydrogen that I know of. The pump is surprisingly compact and simple, and you get purification of the hydrogen too. What could possibly go wrong? How could the H2 pump company fail?

One thing that I noticed went wrong when I tried building one of these was leakage at the seals. I found it uncommonly hard to make seals that held even 20 psi. I was using 4″ x 4″ membranes so 20 psi was the equivalent of 320 pounds of force. If I were to get 200 psi, there would have been 3200 lbs of force. I could never get the seals to stay put at anything more than 20 psi.

Another problem was the membranes themselves. The membranes I bought were not very strong. I used a wire-mesh backing, and a layer of steel behind that. I figured I could reach maybe 200 psi with this design, but didn’t get there. These low pressures limit the range of pump applications. For many applications,  you’d want 150-200 psi. Still, it’s an awfully cool pump,

Robert E. Buxbaum, February 17, 2017. My company, REB Research, makes hydrogen generators and purifiers. I’ve previously pointed out that hydrogen fuel cell cars have some dramatic advantages over pure battery cars.

New REB hydrogen generator for car fueling, etc.

One of my favorite invention ideas, one that I’ve tried to get the DoE to fund, is a membrane hydrogen generator where the waste gas is burnt to heat the reactor. The result should be exceptional efficiency, low-cost, low pollution, and less infrastructure needs. Having failed to interest the government, I’ve gone and built one on my own dime. That’s me on the left, with Shua Spirka, holding the new core module (reactor, boiler, purifier and purifier) sized for personal car fueling.

Me and Shua and our new hydrogen generator core

Me and Shua and our new hydrogen generator core

The core just arrived from the shop last week, now we have to pumps and heat exchangers. As with our current products, the hydrogen is generated from methanol water, and extracted 99.99999% pure by diffusion through a metal membrane. This core fit in a heat transfer pot (see lower right) and the pot sits on a burner for the waste gas. Control is tricky, but I think I’ve got it. If it all works like it’s supposed to, the combination should be 80-90% energy-efficient, delivering about 75 slpm, 9 kg per day. That’s the same output as our largest current electrically heated generators, with a much lower infrastructure cost. The output should be enough to fuel one hydrogen-powered automobile per day, or keep a small fleet of plug-in, hydrogen-hybrids running continuously.

Hydrogen automobiles have a lot of advantages over Tesla-type electric automobiles. I’ll tell you how the thing works as soon as we set it up and test it. Right now, we’ve got other customers and other products to make.

Robert Buxbaum, February 18, 2016. If someone could supply a good hydrogen compressor, and a good fuel cell, that would be most welcome. Someone who can supply that will be able to ride in a really excellent cart of the future at this year’s July 4th parade.

The Hindenburg: mainly the skin burnt

The 1937 Hindenburg disaster is often mentioned as proof that hydrogen is too flammable and dangerous for commercial use. Well hydrogen is flammable, and while the Hindenburg was full of hydrogen when it started burning, but a look at a color photograph of the fire ( below), or at the B+W  Newsreel film of the fire, suggests that it is not the hydrogen burning, but the skin of the zeppelin and the fuel. Note the red color of the majority flame, and note the black smoke. Hydrogen fires are typically invisible or very light blue, and hydrogen fires produce no smoke.

Closeup of the Hindenburg burning. It is the skin that burns, not the gaseous hydrogen

Closeup of the Hindenburg burning. It is the skin and gasoline that burns, not the gaseous hydrogen.

The Hindenburg was not a simple hydrogen balloon either. It was a 15 story tall airship with state-rooms, a dining room and an observation deck. It carried 95 or so passengers and crew. There was plenty of stuff to burn besides hydrogen. Nor could you say that a simple spark had set things off. The Hindenburg crossed the ocean often: every 2 1/2 days. Lightning strikes were common, as were “Saint Elmo’s fire,” and static electricity discharges. And passengers smoked onboard. Holes and leaks in the skin were also common, both on the Hindenburg and on earlier airships. The hydrogen-filled, Graf Zeppelin logged over 1 million flight miles and over 500 trips with no fires. And it’s not like helium-filled zeppelins and blimps are much safer. The photo below shows the fire and crash of a helium-filled Goodyear blimp, “Spirit of Safety”, June, 2011. Hydrogen has such a very high thermal conductivity that it is nearly as hard to light as helium. I recently made this video where I insert a lit cigar into a balloon filled with hydrogen. There is no fire, but the cigar goes out.  In technical terms, hydrogen is said to have a low upper combustion limit.

Helium-filled goodyear blimp catches fire and burns to destruction.

Helium-filled goodyear blimp “spirit of safety” catches fire and burns before crashing. It’s not the helium burning.

The particular problem with the Hindenburg seems to have been its paint, skin and fuel, the same problems as caused the fire aboard the “Spirit of Safety.” The skin of the Hindenburg was cotton, coated with a resin-dope paint that contained particles of aluminum and iron-oxide to help conduct static electricity. This combination is very flammable, essentially rocket fuel, and the German paint company went on to make rocket fuel of a similar composition for the V2 rockets. And the fuel was flammable too: gasoline. The pictures of the Hindenburg disaster suggest (to me) that it is the paint and the underlying cotton skin that burned, or perhaps the fuel. A similar cause seems to have beset the “Spirit of Safety.” For the Hindenburg’s replacement, The Graf II, the paint composition was changed to replace the aluminum powder with graphite – bronze, a far less flammable mixture, and more electrically conductive. Sorry to say, there was no reasonably alternative to gasoline. To this day, much of sport ballooning is done with hydrogen; statistically it appears no more dangerous than hot air ballooning.

It is possible that the start of the fire was a splash of gasoline when the Hindenburg made a bumpy contact with the ground. Another possibility is sabotage, the cause in a popular movie (see here), or perhaps an electric spark. According to Aviation Week, gasoline spoiled on a hot surface was the cause of the “Spirit of Safety fire,” and the Hindenburg disaster looks suspiciously similar. If that’s the case, of course, the lesson of the Hindenburg disaster is reversed. For safety, use hydrogen, and avoid gasoline.

Dr. Robert E. Buxbaum, January 8, 2016. My company, REB Research, makes hydrogen generators, and other hydrogen equipment. If you need hydrogen for weather balloons, or sport ballooning, or for fuel cells, give us a call.

Advanced windmills + 20 years = field of junk

Everything wears out. This can be a comforting or a depressing thought, but it’s a truth. No old mistake, however egregious, lasts forever, and no bold advance avoids decay. At best, last year’s advance will pay for itself with interest, will wear out gracefully, and will be recalled fondly by aficionados after it’s replaced by something better. Water wheels, and early steamships are examples of this type of bold advance. Unfortunately, it is often the case that last years innovation turns out to be no advance at all: a technological dead end that never pays for itself, and becomes a dangerous, rotting eyesore or worse, a laughing-stock blot or a blot on the ecology. Our first two generations of advanced windmill farms seem to match this description; perhaps the next generation will be better, but here are some thoughts on lessons learned from the existing fields of rotting windmills.

The ancient design windmills of Don Quixote’s Spain (1300?) were boons. Farmers used them to grind grain or cut wood, and to to pump drinking water. Holland used similar early windmills to drain their land. So several American presidents came to believe advanced design windmills would be similar boons if used for continuous electric power generation. It didn’t work, and many of the problems could have been seen at the start. While the farmer didn’t care when his water was pumped, or when his wood is cut. When you’re generating electricity, there is a need to match the power demand exactly. Whenever the customer turns on the switch, electricity is expected to flow at the appropriate amount of Wattage; at other times any power generated is a waste or a nuisance. But electric generator-windmills do not produce power on demand, they produce power when the wind blows. The mismatch of wind and electric demand has bedeviled windmill reliability and economic return. It will likely continue to do so until we find a good way to store electric power cheaply. Until then windmills will not be able to produce electricity at competitive prices to compete with cheap coal and nuclear power.

There is also the problem of repair. The old windmills of Holland still turn a century later because they were relatively robust, and relatively easy to maintain. The modern windmills of the US stand much taller and move much faster. They are often hit, and damaged by lightning strikes, and their fast-turning gears tend to wear out fast, Once damaged, modern windmills are not readily fix, They are made of advanced fiberglass materials spun on special molds. Worse yet, they are constructed in mountainous, remote locations. Such blades can not be replaces by amateurs, and even the gears are not readily accessed to repair. More than half of the great power-windmills built in the last 35 years have worn out and are unlikely to ever get repair. Driving past, you see fields of them sitting idle; the ones still turning look like they will wear out soon. The companies that made and installed these behemoth are mostly out of the business, so there is no-one there to take them down even if there were an economic incentive to do so. Even where a company is found to fix the old windmills, no one would as there is not sufficient economic return — the electricity is worth less than the repair.

Komoa Wind Farm in Kona, Hawaii June 2010; Friends of Grand Ronde Valley.

Komoa Wind Farm in Kona, Hawaii, June 2010; A field of modern design wind-turbines already ruined by wear, wind, and lightning. — Friends of Grand Ronde Valley.

A single rusting windmill would be bad enough, but modern wind turbines were put up as wind farms with nominal power production targeted to match the output of small coal-fired generators. These wind farms require a lot of area,  covering many square miles along some of the most beautiful mountain ranges and ridges — places chosen because the wind was strong

Putting up these massive farms of windmills lead to a situation where the government had pay for construction of the project, and often where the government provided the land. This, generous spending gives the taxpayer the risk, and often a political gain — generally to a contributor. But there is very little political gain in paying for the repair or removal of the windmills. And since the electricity value is less than the repair cost, the owners (friends of the politician) generally leave the broken hulks to sit and rot. Politicians don’t like to pay to fix their past mistakes as it undermines their next boondoggle, suggesting it will someday rust apart without ever paying for itself.

So what can be done. I wish I could suggest less arrogance and political corruption, but I see no way to achieve that, as the poet wrote about Ozymandias (Ramses II) and his disastrous building projects, the leader inevitably believes: “I am Ozymandias, king of kings; look on my works ye mighty and despair.” So I’ll propose some other, less ambitious ideas. For one, smaller demonstration projects closer to the customer. First see if a single windmill pays for itself, and only then build a second. Also, electricity storage is absolutely key. I think it is worthwhile to store excess wind power as hydrogen (hydrogen storage is far cheaper than batteries), and the thermodynamics are not bad

Robert E. Buxbaum, January 3, 2016. These comments are not entirely altruistic. I own a company that makes hydrogen generators and hydrogen purifiers. If the government were to take my suggestions I would benefit.

Highest temperature superconductor so far: H2S

The new champion of high-temperature superconductivity is a fairly common gas, hydrogen sulphide, H2S. By compressing it to 150 GPa, 1.5 million atm., a team lead by Alexander Drozdov and M. Eremets of the Max Planck Institute coaxed superconductivity from H2S at temperatures as high as 203.5°K (-70°C). This is, by far, the warmest temperature of any superconductor discovered to-date, and it’s main significance is to open the door for finding superconductivity in other, related hydrogen compounds — ideally at warmer temperatures and/or less-difficult pressures. Among the interesting compounds that will certainly get more attention: PH3, BH3, Methyl mercaptan, and even water, either alone or in combination with H2S.

Relationship between H2S pressure and critical temperature for superconductivity.

Relation between pressure and critical temperature for superconductivity, Tc, in H2S (filled squares) and D2S (open red). The magenta point was measured by magnetic susceptibility (Nature)

H2S superconductivity appears to follow the standard, Bardeen–Cooper–Schrieffer theory (B-C-S). According to this theory superconductivity derives from the formation of pairs of opposite-spinning electrons (Cooper pairs) particularly in light, stiff, semiconductor materials. The light, positively charged lattice quickly moves inward to follow the motion of the electrons, see figure below. This synchronicity of motion is posited to create an effective bond between the electrons, enough to counter the natural repulsion, and allows the the pairs to condense to a low-energy quantum state where they behave as if they were very large and very spread out. In this large, spread out state, they slide through the lattice without interacting with the atoms or the few local vibrations and unpaired electrons found at low temperatures. From this theory, we would expect to find the highest temperature superconductivity in the lightest lattice, materials like ice, boron hydride, magnesium hydride, or H2S, and we expect to find higher temperature behavior in the hydrogen version, H2O, or H2S than in the heavier, deuterium analogs, D2O or D2S. Experiments with H2S and D2S (shown at right) confirm this expectation suggesting that H2S superconductivity is of the B-C-S type. Sorry to say, water has not shown any comparable superconductivity in experiments to date.

We have found high temperature superconductivity in few of materials that we would expect from B-C-S theory, and yet-higher temperature is seen in many unexpected materials. While hydride materials generally do become superconducting, they mostly do so only at low temperatures. The highest temperature semiconductor B-C-S semiconductor discovered until now was magnesium boride, Tc = 27 K. More bothersome, the most-used superconductor, Nb-Sn, and the world record holder until now, copper-oxide ceramics, Tc = 133 K at ambient pressure; 164 K at 35 GPa (350,000 atm) were not B-C-S. There is no version of B-C-S theory to explain why these materials behave as well as they do, or why pressure effects Tc in them. Pressure effects Tc in B-C-S materials by raising the energy of small-scale vibrations that would be necessary to break the pairs. Why should pressure effect copper ceramics? No one knows.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity.  The lighter and stiffer the lattice, the higher temperature the superconductivity.

The standard theory of superconductivity relies on Cooper pairs of electrons held together by lattice elasticity. The lighter and stiffer the lattice, the higher temperature the superconductivity.

The assumption is that high-pressure H2S acts as a sort of metallic hydrogen. From B-C-S theory, metallic hydrogen was predicted to be a room-temperature superconductor because the material would likely to be a semi-metal, and thus a semiconductor at all temperatures. Hydrogen’s low atomic weight would mean that there would be no significant localized vibrations even at room temperature, suggesting room temperature superconductivity. Sorry to say, we have yet to reach the astronomical pressures necessary to make metallic hydrogen, so we don’t know if this prediction is true. But now it seems H2S behaves nearly the same without requiring the extremely high pressures. It is thought that high temperature H2S superconductivity occurs because H2S somewhat decomposes to H3S and S, and that the H3S provides a metallic-hydrogen-like operative lattice. The sulfur, it’s thought, just goes along for the ride. If this is the explanation, we might hope to find the same behaviors in water or phosphine, PH3, perhaps when mixed with H2S.

One last issue, I guess, is what is this high temperature superconductivity good for. As far as H2S superconductivity goes, the simple answer is that it’s probably good for nothing. The pressures are too high. In general though, high temperature superconductors like NbSn are important. They have been valuable for making high strength magnets, and for prosaic applications like long distance power transmission. The big magnets are used for submarine hunting, nuclear fusion, and (potentially) for levitation trains. See my essay on Fusion here, it’s what I did my PhD on — in chemical engineering, and levitation trains, potentially, will revolutionize transport.

Robert Buxbaum, December 24, 2015. My company, REB Research, does a lot with hydrogen. Not that we make superconductors, but we make hydrogen generators and purifiers, and I try to keep up with the relevant hydrogen research.

Chemical engineers and boilers, ‘I do anything’

One of the problems I run into trying to hire chemical engineers is that their background is so varied that they imagine they can do anything. Combine this with a willingness to try to do anything, and the job interview can go like this.

Me: You have a great resume. I suppose you know that our company is a leader in hydrogen engineering (in my case). Tell me, what do you see yourself doing at our company?

Engineer: I don’t know. I do anything and everything.

Me: That covers a lot of ground. Is there something that you do particularly well, or that you would particularly like to do here?

Engineer.: Anything, really.

Me: Do you see yourself making coffee?

Engineer: I could do that, but was thinking of something with more … responsibility.

Me: OK. Could you design and build a 5 kW, gas-fired boiler?

Engineer: Himm. How much coffee did you say you guys drink?

Current version of our H2 generators (simplified) and the combustion-heated modification I'm working on.

Current version of our H2 generators (simplified) and the combustion-heated modification I’m working on.

Not quite where I was going with that. The relevance of this joke is that I’m finally getting around to redesigning our hydrogen generators so that they are heated by waste-gas combustion instead of electricity. That was the plan originally, and it appears in almost all of my patents. But electricity is so easy to deal with and control that all REB generators have been heated this way, even the largest.

The current and revised processes are shown in the figure at right. Our general process is to make ultra pure hydrogen from methanol and water in one step by the following reaction:

CH3OH + H2O –> CO2  + 3 H2.

done in a membrane reactor (see advantages). My current thought is to make the first combustion heated hydrogen generator have an output about 2/3 as large as our largest. That is, to produce 100 scfh, or 50 slpm, or 6 kg of H2/ day. This could be advantageous for people trying to fuel fork lifts or a hybrid, fuel cell car; a car could easily carry 12 kg of hydrogen, allowing it to go an extra 300 miles.

The generator with this output will need a methanol-water feed rate of about 2/3 gal per hour (about 80¢/worth pre hour), and will need a heat rate of 2.5 to 3 kW. A key design issue is that I have to be sure not to extract too much energy value from the feed because, if there’s not enough energy in the waste gas, the fire could go out. That is, nearly pure CO2 doesn’t burn. Alternately, if there is too much flow to the flame or too much energy content, there might be over-heating. In order to avoid the flame going out, I have a pilot flame that turns off the flow if it goes out. I also plan to provide 30% or so of the reactor heat about 800 W, by burning non-wast gas, natural gas in this iteration. My plan is to use this flow to provide most of the temperature control, but to provide secondary control by (and safety) by venting some of the off-gas if the reactor gets hotter than a set limit. Early experiments suggest it should work.

The business side of this is still unknown. Perhaps this would provide military power or cabins in the woods. Perhaps ship-board auxiliary power or balloons, or hydrogen fueling stations, or perhaps it will be used for chemical applicationsWith luck, it’ll sell to someone who needs hydrogen.

Robert E. Buxbaum. December 4, 2015. By the way, hydrogen isn’t as flammable as you might think.

Air swimmer at REB Research

Birds got to swim and fish got to fly. Gonna love that hydrogen till the day I die. Here’s a movie of our hydrogen-filled air swimmer, a fish-blimp at REB Research. My hope is that this thing will help us sell hydrogen generators — perhaps to folks who fly military balloons, or those who fly hydrogen balloons for sport. On the other hand, the swimmer is a lot of fun to play with — and I got to show it off to a first grade class!

Aside from balloon fliers, military and otherwise, the sort of customers I’d hoped to attract were those building fueling stations for fuel cell cars or drone airplanes, and those running multiple gas chromatographs or adding hydrogen to car or diesel engine. Even small amounts of hydrogen added to a standard engine will reduce pollution significantly, add raise mileage too: a plus for a company like VW.

Dr. Robert E. Buxbaum, December 2, 2015. I should mention that hydrogen balloons are no where near as unsafe as people think. Here’s a movie I made of lighting a hydrogen filled balloon with a cigar.

My latest invention: improved fuel cell reformer

Last week, I submitted a provisional patent application for an improved fuel reformer system to allow a fuel cell to operate on ordinary, liquid fuels, e.g. alcohol, gasoline, and JP-8 (diesel). I’m attaching the complete text of the description, below, but since it is not particularly user-friendly, I’d like to add a small, explanatory preface. What I’m proposing is shown in the diagram, following. I send a hydrogen-rich stream plus ordinary fuel and steam to the fuel cell, perhaps with a pre-reformer. My expectation that the fuel cell will not completely convert this material to CO2 and water vapor, even with the pre-reformer. Following the fuel cell, I then use a water-gas shift reactor to convert product CO and H2O to H2 and CO2 to increase the hydrogen content of the stream. I then use a semi-permeable membrane to extract the waste CO2 and water. I recirculate the hydrogen and the rest of the water back to the fuel cell to generate extra power, prevent coking, and promote steam reforming. I calculate the design should be able to operate at, perhaps 0.9 Volt per cell, and should nearly double the energy per gallon of fuel compared to ordinary diesel. Though use of pure hydrogen fuel would give better mileage, this design seems better for some applications. Please find the text following.

Use of a Water-Gas shift reactor and a CO2 extraction membrane to improve fuel utilization in a solid oxide fuel cell system.

Inventor: Dr. Robert E. Buxbaum, REB Research, 12851 Capital St, Oak Park, MI 48237; Patent Pending.

Solid oxide fuel cells (SOFCs) have improved over the last 10 years to the point that they are attractive options for electric power generation in automobiles, airplanes, and auxiliary power supplies. These cells operate at high temperatures and tolerate high concentrations of CO, hydrocarbons and limited concentrations of sulfur (H2S). SOFCs can operate on reformate gas and can perform limited degrees of hydrocarbon reforming too – something that is advantageous from the stand-point of fuel logistics: it’s far easier to transport a small volume of liquid fuel that it is a large volume of H2 gas. The main problem with in-situ reforming is the danger of coking the fuel cell, a problem that gets worse when reforming is attempted with the more–desirable, heavier fuels like gasoline and JP-8. To avoid coking the fuel cell, heavier fuels are typically reforming before hand in a separate reactor, typically by partial oxidation at auto-thermal conditions, a process that typically adds nitrogen and results in the inability to use the natural heat given off by the fuel cell. Steam reforming has been suggested as an option (Chick, 2011) but there is not enough heat released by the fuel cell alone to do it with the normal fuel cycles.

Another source of inefficiency in reformate-powered SOFC systems is basic to the use of carbon-containing fuels: the carbon tends to leave the fuel cell as CO instead of CO2. CO in the exhaust is undesirable from two perspectives: CO is toxic, and quite a bit of energy is wasted when the carbon leaves in this form. Normally, carbon can not leave as CO2 though, since CO is the more stable form at the high temperatures typical of SOFC operation. This patent provides solutions to all these problems through the use of a water-gas shift reactor and a CO2-extraction membrane. Find a drawing of a version of the process following.

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

RE. Buxbaum invention: A suggested fuel cycle to allow improved fuel reforming with a solid oxide fuel cell

As depicted in Figure 1, above, the fuel enters, is mixed with steam or partially boiled water, and heated in the rectifying heat exchanger. The hot steam + fuel mix then enters a steam reformer and perhaps a sulfur removal stage. This would be typical steam reforming except for a key difference: the heat for reforming comes (at least in part) from waste heat of the SOFC. Normally speaking there would not be enough heat, but in this system we add a recycle stream of H2-rich gas to the fuel cell. This stream, produced from waste CO in a water-gas shift reactor (the WGS) shown in Figure 1. This additional H2 adds to the heat generated by the SOFC and also adds to the amount of water in the SOFC. The net effect should be to reduce coking in the fuel cell while increasing the output voltage and providing enough heat for steam reforming. At least, that is the thought.

SOFCs differ from proton conducting FCS, e.g. PEM FCs, in that the ion that moves is oxygen, not hydrogen. As a result, water produced in the fuel cell ends up in the hydrogen-rich stream and not in the oxygen stream. Having this additional water in the fuel stream of the SOFC can promote fuel reforming within the FC. This presents a difficulty in exhausting the waste water vapor in that a means must be found to separate it from un-combusted fuel. This is unlike the case with PEM FCs, where the waste water leaves with the exhaust air. Our main solution to exhausting the water is the use of a membrane and perhaps a knockout drum to extract it from un-combusted fuel gases.

Our solution to the problem of carbon leaving the SOFC as CO is to react this CO with waste H2O to convert it to CO2 and additional H2. This is done in a water gas shift reactor, the WGS above. We then extract the CO2 and remaining, unused water through a CO2- specific membrane and we recycle the H2 and unconverted CO back to the SOFC using a low temperature recycle blower. The design above was modified from one in a paper by PNNL; that paper had neither a WGS reactor nor a membrane. As a result it got much worse fuel conversion, and required a high temperature recycle blower.

Heat must be removed from the SOFC output to cool it to a temperature suitable for the WGS reactor. In the design shown, the heat is used to heat the fuel before feeding it to the SOFC – this is done in the Rectifying HX. More heat must be removed before the gas can go to the CO2 extractor membrane; this heat is used to boil water for the steam reforming reaction. Additional heat inputs and exhausts will be needed for startup and load tracking. A solution to temporary heat imbalances is to adjust the voltage at the SOFC. The lower the voltage the more heat will be available to radiate to the steam reformer. At steady state operation, a heat balance suggests we will be able to provide sufficient heat to the steam reformer if we produce electricity at between 0.9 and 1.0 Volts per cell. The WGS reactor allows us to convert virtually all the fuel to water and CO2, with hardly any CO output. This was not possible for any design in the PNNL study cited above.

The drawing above shows water recycle. This is not a necessary part of the cycle. What is necessary is some degree of cooling of the WGS output. Boiling recycle water is shown because it can be a logistic benefit in certain situations, e.g. where you can not remove the necessary CO2 without removing too much of the water in the membrane module, and in mobile military situations, where it’s a benefit to reduce the amount of material that must be carried. If water or fuel must be boiled, it is worthwhile to do so by cooling the output from the WGS reactor. Using this heat saves energy and helps protect the high-selectivity membranes. Cooling also extends the life of the recycle blower and allows the lower-temperature recycle blowers. Ideally the temperature is not lowered so much that water begins to condense. Condensed water tends to disturb gas flow through a membrane module. The gas temperatures necessary to keep water from condensing in the module is about 180°C given typical, expected operating pressures of about 10 atm. The alternative is the use of a water knockout and a pressure reducer to prevent water condensation in membranes operated at lower temperatures, about 50°C.

Extracting the water in a knockout drum separate from the CO2 extraction has the secondary advantage of making it easier to adjust the water content in the fuel-gas stream. The temperature of condensation can then be used to control the water content; alternately, a separate membrane can extract water ahead of the CO2, with water content controlled by adjusting the pressure of the liquid water in the exit stream.

Some description of the membrane is worthwhile at this point since a key aspect of this patent – perhaps the key aspect — is the use of a CO2-extraction membrane. It is this addition to the fuel cycle that allows us to use the WGS reactor effectively to reduce coking and increase efficiency. The first reasonably effective CO2 extraction membranes appeared only about 5 years ago. These are made of silicone polymers like dimethylsiloxane, e.g. the Polaris membrane from MTR Inc. We can hope that better membranes will be developed in the following years, but the Polaris membrane is a reasonably acceptable option and available today, its only major shortcoming being its low operating temperature, about 50°C. Current Polaris membranes show H2-CO2 selectivity about 30 and a CO2 permeance about 1000 Barrers; these permeances suggest that high operating pressures would be desirable, and the preferred operation pressure could be 300 psi (20 atm) or higher. To operate the membrane with a humid gas stream at high pressure and 50°C will require the removal of most of the water upstream of the membrane module. For this, I’ve included a water knockout, or steam trap, shown in Figure 1. I also include a pressure reduction valve before the membrane (shown as an X in Figure 1). The pressure reduction helps prevent water condensation in the membrane modules. Better membranes may be able to operate at higher temperatures where this type of water knockout is not needed.

It seems likely that, no matter what improvements in membrane technology, the membrane will have to operate at pressures above about 6 atm, and likely above about 10 atm (upstream pressure) exhausting CO2 and water vapor to atmosphere. These high pressures are needed because the CO2 partial pressure in the fuel gas leaving the membrane module will have to be significantly higher than the CO2 exhaust pressure. Assuming a CO2 exhaust pressure of 0.7 atm or above and a desired 15% CO2 mol fraction in the fuel gas recycle, we can expect to need a minimum operating pressure of 4.7 atm at the membrane. Higher pressures, like 10 or 20 atm could be even more attractive.

In order to reform a carbon-based fuel, I expect the fuel cell to have to operate at 800°C or higher (Chick, 2011). Most fuels require high temperatures like this for reforming –methanol being a notable exception requiring only modest temperatures. If methanol is the fuel we will still want a rectifying heat exchanger, but it will be possible to put it after the Water-Gas Shift reactor, and it may be desirable for the reformer of this fuel to follow the fuel cell. When reforming sulfur-containing fuels, it is likely that a sulfur removal reactor will be needed. Several designs are available for this; I provide references to two below.

The overall system design I suggest should produce significantly more power per gm of carbon-based feed than the PNNL system (Chick, 2011). The combination of a rectifying heat exchange, a water gas reactor and CO2 extraction membrane recovers chemical energy that would otherwise be lost with the CO and H2 bleed steam. Further, the cooling stage allows the use of a lower temperature recycle pump with a fairly low compression ratio, likely 2 or less. The net result is to lower the pump cost and power drain. The fuel stream, shown in orange, is reheated without the use of a combustion pre-heater, another big advantage. While PNNL (Chick, 2011) has suggested an alternative route to recover most of the chemical energy through the use of a turbine power generator following the fuel cell, this design should have several advantages including greater reliability, and less noise.

Claims:

1.   A power-producing, fuel cell system including a solid oxide fuel cell (SOFC) where a fuel-containing output stream from the fuel cell goes to a regenerative heat exchanger followed by a water gas shift reactor followed by a membrane means to extract waste gases including carbon dioxide (CO2) formed in said reactor. Said reactor operating a temperatures between 200 and 450°C and the extracted carbon dioxide leaving at near ambient pressure; the non-extracted gases being recycled to the fuel cell.

Main References:

The most relevant reference here is “Solid Oxide Fuel Cell and Power System Development at PNNL” by Larry Chick, Pacific Northwest National Laboratory March 29, 2011: http://www.energy.gov/sites/prod/files/2014/03/f10/apu2011_9_chick.pdf. Also see US patent  8394544. it’s from the same authors and somewhat similar, though not as good and only for methane, a high-hydrogen fuel.

Robert E. Buxbaum, REB Research, May 11, 2015.

Getting rid of hydrogen

Though most of my company’s business is making hydrogen or purifying it, or consulting about it, we also provide sorbers and membranes that allow a customer to get rid of unwanted hydrogen, or remove it from a space where it is not wanted. A common example is a customer who has a battery system for long-term operation under the sea, or in space. The battery or the metal containment is then found to degas hydrogen, perhaps from a corrosion reaction. The hydrogen may interfere with his electronics, or the customer fears it will reach explosive levels. In one case the customer’s system was monitoring deep oil wells and hydrogen from the well was messing up its fiber optic communications.

img505

Pd-coated niobium screws used to getter hydrogen from electronic packages.

For many of these problems, the simplest solution is an organic hydrogen getter of palladium-catalyst and a labile unsaturated hydrocarbon, e.g. buckminsterfullerene. These hydrogen getters are effective in air or inert gas at temperatures between about -20°C and 150°C. When used in an inert gas the organic is hydrogenated, there is a finite amount of removal per gram of sober. When used in air the catalyst promotes the water-forming reaction, and thus there is a lot more hydrogen removal. Depending on the organic, we can provide gettering to lower temperatures or higher. We’ve a recent patent on an organo-palladium gel to operate to 300°C, suitable for down-well hydrogen removal.

At high temperatures, generally above 100*C, we generally suggest an inorganic hydrogen remover, e.g. our platinum ceria catalyst. This material is suitable for hydrogen removal from air, including from polluted air like that in radioactive waste storage areas. Platinum catalyst works long-term at temperatures between about 0°C and 600°C. The catalyst-sorber also works without air, reducing Ce2O3 to CeO and converting hydrogen irreversibly to water (H2O). As with the organo-Pd getters, there is a finite amount of hydrogen removal per gram when these materials are used in a sealed environment.

Low temperature, Pd-grey coated, Pd-Ag membranes made for the space shuttle to remove hydrogen from the drinking water at room temperature. The water came from the fuel cells.

Low temperature, metal membranes made for NASA to remove H2 from  drinking water at room temperature.

Another high temperature hydrogen removal option is metallic getters, e.g. yttrium or vanadium-titanium alloy. These metals require temperatures in excess of 100°C to be effective, and typically do not work well in air. They are best suited for removing hydrogen a vacuum or inert gas, converting it to metallic hydride. The thermodynamics of hydriding is such that, depending on the material, these getters can extract hydrogen even at temperatures up to 700°C, and at very low hydrogen pressures, below 10-9 torr. For operation in air or at 100-400°C we typically provide these getters coated with palladium to increase the hydrogen sorption rate. A fairly popular product is palladium-coated niobium screws 4-40 x 1/4″. Each screw will remove over 2000 sec of hydrogen at temperatures up to 400°C. We also provide oxygen, nitrogen and water getters. They work on the same principle, but form metallic oxides or nitrides instead of hydrides.

Our last, and highest-end, hydrogen-removal option is to provide metallic membranes. These don’t remove the hydrogen as such, but transfer it elsewhere. We’ve provided these for the space shuttle, and to the nuclear industry so that hydrogen can be vented from nuclear reactors before it has a chance to build up and case damage or interfere with heat transfer. Because nothing is used up, these membranes work, essentially forever. The Fukushima reactor explosions were from corrosion-produced hydrogen that had no acceptable way to vent.

Please contact us for more information, e.g. by phone at 248-545-0155, or check out the various sorbers in our web-siteRobert Buxbaum, May 5, 2014.