Relativity’s twin paradox explained, and why time is at right angles to space.

One of the most famous paradoxes of physics is explained wrong — always. It makes people feel good to think they understand it, but the explanation is wrong and confusing, and it drives young physicists in a wrong direction. The basic paradox is an outgrowth of the special relativity prediction that time moves slower if you move faster.

Thus, if you entered a spaceship and were to travel to a distant star at 99% the speed of light, turn around and get here 30 years, you would have aged far less than 30 years. You and everyone else on the space ship would have aged three years, 1/10 as much as someone on earth.

The paradox part, not that the above isn’t weird enough by itself, is that the person in the spaceship will imagine that he (or she) is standing still, and that everyone on earth is moving away at 99% the speed of light. Thus, the person on the spaceship should expect to find that the people on earth will age slower. That is, the person on the space ship should return from his (or her) three year journey, expecting to find that the people on earth have only aged 0.3 years. Obviously, only one of these expectations can be right, but it’s not clear which (It’s the first one), nor is it clear why.

The wrong explanation appears in an early popular book, “Mr Tompkins in Wonderland”, by Physicist, George Gamow. The book was written shortly after Relativity was proposed, and involves a Mr Tompkins who falls asleep in a physics lecture. Mr. Tompkins dreams he’s riding on a train going near the speed of light, finds things are shorter and time is going slower. He then asks the paradox question to the conductor, who admits he doesn’t quite know how it works (perhaps Gamow didn’t), but that “it has something do do with the brakeman.” That sounds like Gamow is saying the explanation has to do with deceleration at the turn around, or general relativity in general, implying gravity could have a similarly large effect. It doesn’t work that way, and the effect of 1G gravity is small, but everyone seems content to explain the paradox this way. This is particularly unfortunate because these include physicists clouding an already cloudy issue.

In the early days of physics, physicists tried to explain things with a little legitimate math to the lay audience. Gamow did this, as did Einstein, Planck, Feynman, and most others. I try to do this too. Nowadays, physicists have removed the math, and added gobbledygook. The one exception here are the cinematographers of Star Wars. They alone show the explanation correctly.

The explanation does not have to do general relativity or the acceleration at the end of the journey (the brakeman). Instead of working through some acceleration, general relativity effect, the twin paradox works with simple, special relativity: all space contracts for the duration of the trip, and everything in it gets shorter. The person in this spaceship will see the distance to the star shrink by 90%. Traveling there thus takes 1/10th the time because the distance is 1/10th. There and back at 99% the speed of light, takes exactly 3 years.

The equation for time contraction is: t’ = v/x° √(1-(v/c)2) = t° √(1-(v/c)2) where t’ is the time in the spaceship, v is the speed, x° is the distance traveled (as measured from earth), and c is the speed of light. For v/c = .99, we find that √1-(v/c)2 is 0.1. We thus find that t’ = 0.1 t°. When dealing with the twin paradox, it’s better to say that x’ = 0.1x° where x’ is the distance to the star as seen from the spaceship. In either case, when the people on the space ship accelerate, they see the distance in front of them shrink, as shown in Star Wars, below.

Star Wars. The millennium falcon jumps to light speed, and beyond.

That time was at right angles to space was a comment in one of Einstein’s popular articles and books; he wrote several, all with some minimal mathematics Current science has no math, and a lot of politics, IMHO, and thus is not science.

He showed that time and space are at right angles by analogy from Pythagoras. Pythagoras showed that distance on a diagonal, d between two points at right angles, x and y is d = √(x2 + y2). Another way of saying this is d2 =x2 + y2. The relationship is similar for relativistic distances. To explain the twin paradox, we find that the square of the effective distance, x’2 = x°2 (1 – (v/c)2) = x°2 – (x°v)2/c2 = x°2 – (x°v/c)2 = x°2 – (t°2/c2). Here, x°2 is the square of the original distance, and it comes out that the term, – (t°2/c2) behaves like the square of an imaginary distance that is at right angles to it. It comes out that co-frame time, t° behaves as if it were a distance with a scale factor of i/c.

For some reason people today read books on science by non-scientist ‘explainers.’ I These books have no math, and I guess they sell. Publishers think they are helping democratize science, perhaps. You are better off reading the original thinkers, IMHO.

Robert Buxbaum, July 16, 2023. In his autobiography, Einstein claimed to be a fan of scientist -philosopher, Ernst Mach. Mach derived the speed of sound from a mathematical analysis of thermodynamics. Einstein followed, considering that it must be equally true to consider an empty box traveling in space to be one that carries its emptiness with it, as to assume that fresh emptiness comes in at one end and leaves by the other. If you set the two to be equal mathematically, you conclude that both time and space vary with velocity. Similar analysis will show that atoms are real, and that energy must travel in packets, quanta. Einstein also did fun work on the curvature of rivers, and was a fan of this sail ship design. Here is some more on the scientific method.

Leave a Reply