There was a major advance in nuclear fusion this month at the The National Ignition Facility of Lawrence Livermore National Laboratory (LLNL), but the press could not figure out what it was, quite. They claimed ignition, and it was not. They claimed that it opened the door to limitless power. It did not. Some heat-energy was produced, but not much, 2.5 MJ was reported. Translated to the English system, that’s 600 kCal, about as much heat in a “Big Mac”. That’s far less energy went into lasers that set the reaction off. The importance wasn’t the amount in the energy produced, in my opinion, it’s that the folks at LLNL fired off a small hydrogen bomb, in house, and survived the explosion. 600 kCal is about the explosive power of 1.5 lb of TNT.
The process, as reported in the Financial Times, involved “a BB-sized” droplet of holmium -enclosed deuterium and tritium. The folks at LLNL fast-cooked this droplet using 100 lasers, see figure of 2.1MJ total output, converging on one spot simultaneously. As I understand it 4.6 MJ came out, 2.5 MJ more than went in. The impressive part is that the delicate lasers survived the event. By comparison, the blast that bought down Pan Am flight 103 over Lockerbie took only 2-3 ounces of explosive, about 70g. The folks at LLNL say they can do this once per day, something I find impressive.
The New York Times seemed to think this was ignition. It was not. Given the size of a BB, and the density of liquid deuterium-tritium, it would seem the weight of the drop was about 0.022g. This is not much but if it were all fused, it would release 12 GJ, the equivalent of about 3 tons of TNT. That the energy released was only 2.5MJ, suggests that only 0.02% of the droplet was fused. It is possible, though unlikely, that the folks at LLNL could have ignited the entire droplet. If they did, the damage from 5 tons of TNT equivalent would have certainly wrecked the facility. And that’s part of the problem; to make practical energy, you need to ignite the whole droplet and do it every second or so. That’s to say, you have to burn the equivalent of 5000 Big Macs per second.
You also need the droplets to be a lot cheaper than they are. Today, these holmium capsules cost about $100,000 each. We will need to make them, one per second for a cost around $! for this to make any sort of sense. Not to say that the experiments are useless. This is a great way to test H-bomb designs without destroying the environment. But it’s not a practical energy production method. Even ignoring the energy input to the laser, it is impossible to deal with energy when it comes in the form of huge explosions. In a sense we got unlimited power. Unfortunately it’s in the form of H-Bombs.
Robert Buxbaum, January 5, 2023