Plans to Raise-the-Dead-Sea

The Dead Sea in Israel is a popular tourist attraction and health resort-area. It is also the lowest point on the planet, with a surface about 430m below sea level. Its water is saturated with an alkaline salt, and quite devoid of life, and it’s shrinking fast, loosing about 1 m in height every year. The Jordan river water that feeds the sea is increasingly drawn off for agriculture, and is now about 10% of what it was in the 1800s. The Dead Sea is disappearing fast, a story that is repeated with other inland seas: the Aral Sea, the Great Salt Lake, etc. In theory, one could reverse the loss using sea water. In theory, you could generate power dong this too: 430m is seven times the drop-height of Niagara Falls. The problem is the route and the price.

Five (or six) semi-attractive routes have been mapped out to bring water to the Dead Sea, as shown on the map at right. The shortest, and least expensive is route “A”. Here, water from the Mediterranean enters a 12 km channel near Haifa; it is pumped up 50m and travels in a pipe for about 52 km over the Galilean foothills, exiting to a power station as shown on the elevation map below. In the original plan the sea water feeds into the Jordan river, a drop of about 300m. The project had been estimated to cost $3 B. Unfortunately, it would make much of the Jordan river salty. It was thus deemed unacceptable. A variation of this would run the seawater along the Jordan in a pipe or an open channel. This would add to the cost, and would likely diminish the power that could be extracted, but you would not contaminate the Jordan.

A more expensive route, “B”, is shorter but it requires extensive tunneling under Jerusalem. Assuming 20 mies of tunnel at $500 MM/mile, this would cost $10B. It also requires the sea water to flow through the Palestinian West Bank on its way to the sea. This is politically sensitive and is unlikely to be acceptable to the West Bank Palestinians.

Vertical demand of the northern route

Two other routes, labeled “C” and “D” are likely even more expensive than route B. They require the water to be pumped over the Judaean hills near Bethlehem, south of Jerusalem. That’s perhaps 600m up. The seawater would flow from Ashkalon or Gaza and would enter the Dead Sea at Sodom, near Masada. Version C is the most politically acceptable, since it’s short and does not go through Palestinian land. Also, water enters the dead sea at its saltiest point so there is no disruption of the environment. Route D is similar to C, somewhat cheaper, but a lot more political. It goes through Gaza.

The longest route, “E” would go through Jordan taking water from the Red Sea. Its price tag is said to be $10 B. It’s a relatively flat route, but still arduous, rising 210m. As a result it’s not clear that any power would be generated. A version of this route could send the water entirely through Israel. It’s not clear that this would be better than Route C. Looking things over, it was decided that only routes that made sense are those that avoided Palestinian land. An agreement was struck with Jordan to go ahead with route D, with construction to begin in 2021. The project has been on hold though because of cost, COVID, and governmental inertia.

In order to make a $5-10B project worthwhile, you’ll have to generate $500MM to $1B/year. Some of this will come from tourism, but the rest must come from electrical power generation. As an estimate of power generation, let’s assume that that the flow is 65 m3/s, just enough to balance the evaporation rate. Assuming a 400 m power drop and an 80% efficient turbine, we should generate 80% of 255 MWe = about 204 MWe on average. Assuming a value of electricity of 10¢/kWh, that translates to $20,000/ hour, or $179 million per year. This is something, but not enough to justify the cost. We might increase the value of the power by including an inland pond for water storage. This would allow power production to be regulated to times of peak load, or it could be used for recreation, fish-farming, or cooling a thermal power station up to 1000 MWe. These options almost make sense, but with the tunnel prices quoted, the project is still too expensive to make sense. It is “on hold” for now.

It’s not like the sea will disappear if nothing is done. With 10% of the original in-flow of water to the Dead Sea, it will shrink to 10% its original size, and then stop shrinking. At that point evaporation will match in-flow. One could add more fresh water by increasing the flow from the sea of Galilee, but that water is needed. When more water is available, more is taken out for farming. This is what’s happened to the Arial Sea — it’s now about 10% the original size, and quite salty.

Elon Musk besides the prototype 12 foot diameter tunnel.

There’s a now a new tunnel option though and perhaps these routes deserve a second look: Elon Musk claims his “Boring company” can bore long tunnels of 12 foot diameter, for $10-20 MM/mile. This should be an OK size for this project. Assuming he’s right about the price, or close to right, the Dead Sea could be raised for $1B or so. At that price-point, it makes financial sense. It would even make sense if one built multiple seapools, perhaps one for swimming and one for energy storage, to be located before the energy-generating drop, and another for fish after. There might even be a pool that would serve as coolant for a thermal power plant. Water in the desert is welcome, even if it’s salt water.

Robert Buxbaum, February 14, 2023.

2 thoughts on “Plans to Raise-the-Dead-Sea

  1. lwdoerr

    The exquisite solution is to find a commercial use for the brine.
    Our closed-loop waste and water treatment system can produce >95% potable water from brown water but we lose 15%-35% of the potable water effluent to evaporation. Farming and recreation can use gray water but only as a trade-off for potable water. Fear of the toilet-to-tap cycle is the greatest impediment to implementation but, as Michael Flynn at NASA says, all water is toilet water (human or otherwise).
    However, closed-loop systems don’t reduce net draw; they simply reduce the cost of treatment, consistency of purity, and length-of-loop.
    The existence of living entities on land and in freshwater, together with support systems like farming and protein production, determine the draw. The solution is never central planning through regulation of usage. Freshwater underpins standard of living and population growth. Humans are the ultimate resource as Julian Simon pointed out more than 25 years ago; it is only through human ability and pursuit of well-being that these solutions will be found.
    Again, profitable uses of brine need to be found to support increases in standard of living and, most importantly, increases in population.

    Reply
  2. David Klein

    Don’t forget that once the water is started through a tunnel that goes up and down, it keeps going by itself. Also, it’s only gonna work until the Dead Sea fills up, and you have to stop the point where the dead she is going to end up being filled to.

    Reply

Leave a Reply